MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn1m1nn Structured version   Visualization version   GIF version

Theorem nn1m1nn 11078
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn1m1nn (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))

Proof of Theorem nn1m1nn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 399 . . 3 (𝑥 = 1 → (𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ))
2 1cnd 10094 . . 3 (𝑥 = 1 → 1 ∈ ℂ)
31, 22thd 255 . 2 (𝑥 = 1 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ 1 ∈ ℂ))
4 eqeq1 2655 . . 3 (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1))
5 oveq1 6697 . . . 4 (𝑥 = 𝑦 → (𝑥 − 1) = (𝑦 − 1))
65eleq1d 2715 . . 3 (𝑥 = 𝑦 → ((𝑥 − 1) ∈ ℕ ↔ (𝑦 − 1) ∈ ℕ))
74, 6orbi12d 746 . 2 (𝑥 = 𝑦 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ)))
8 eqeq1 2655 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1))
9 oveq1 6697 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 − 1) = ((𝑦 + 1) − 1))
109eleq1d 2715 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥 − 1) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ))
118, 10orbi12d 746 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)))
12 eqeq1 2655 . . 3 (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1))
13 oveq1 6697 . . . 4 (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1))
1413eleq1d 2715 . . 3 (𝑥 = 𝐴 → ((𝑥 − 1) ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ))
1512, 14orbi12d 746 . 2 (𝑥 = 𝐴 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)))
16 ax-1cn 10032 . 2 1 ∈ ℂ
17 nncn 11066 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
18 pncan 10325 . . . . . 6 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
1917, 16, 18sylancl 695 . . . . 5 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦)
20 id 22 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ)
2119, 20eqeltrd 2730 . . . 4 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) ∈ ℕ)
2221olcd 407 . . 3 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))
2322a1d 25 . 2 (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ) → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)))
243, 7, 11, 15, 16, 23nnind 11076 1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382   = wceq 1523  wcel 2030  (class class class)co 6690  cc 9972  1c1 9975   + caddc 9977  cmin 10304  cn 11058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-sub 10306  df-nn 11059
This theorem is referenced by:  nn1suc  11079  nnsub  11097  nnm1nn0  11372  nn0ge2m1nn  11398  elfznelfzo  12613  psgnfzto1stlem  29978  ballotlemfc0  30682  ballotlemfcc  30683  stirlinglem5  40613
  Copyright terms: Public domain W3C validator