![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0xnn0 | Structured version Visualization version GIF version |
Description: A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0xnn0 | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 11558 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | 1 | sseli 3740 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ℕ0cn0 11484 ℕ0*cxnn0 11555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-un 3720 df-in 3722 df-ss 3729 df-xnn0 11556 |
This theorem is referenced by: xnn0xadd0 12270 wlk1ewlk 26746 frgrregorufrg 27480 |
Copyright terms: Public domain | W3C validator |