Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglemA Structured version   Visualization version   GIF version

Theorem nn0sumshdiglemA 41735
Description: Lemma for nn0sumshdig 41739 (induction step, even multiplier). (Contributed by AV, 3-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglemA (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Distinct variable group:   𝑘,𝑎,𝑥,𝑦

Proof of Theorem nn0sumshdiglemA
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11259 . . . 4 ((𝑎 / 2) ∈ ℕ → (𝑎 / 2) ∈ ℕ0)
2 blennn0em1 41707 . . . 4 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ0) → (#b‘(𝑎 / 2)) = ((#b𝑎) − 1))
31, 2sylan2 491 . . 3 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → (#b‘(𝑎 / 2)) = ((#b𝑎) − 1))
4 fveq2 6158 . . . . . . . . . . . 12 (𝑥 = (𝑎 / 2) → (#b𝑥) = (#b‘(𝑎 / 2)))
54eqeq1d 2623 . . . . . . . . . . 11 (𝑥 = (𝑎 / 2) → ((#b𝑥) = 𝑦 ↔ (#b‘(𝑎 / 2)) = 𝑦))
6 id 22 . . . . . . . . . . . 12 (𝑥 = (𝑎 / 2) → 𝑥 = (𝑎 / 2))
7 oveq2 6623 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎 / 2) → (𝑘(digit‘2)𝑥) = (𝑘(digit‘2)(𝑎 / 2)))
87oveq1d 6630 . . . . . . . . . . . . . 14 (𝑥 = (𝑎 / 2) → ((𝑘(digit‘2)𝑥) · (2↑𝑘)) = ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))
98adantr 481 . . . . . . . . . . . . 13 ((𝑥 = (𝑎 / 2) ∧ 𝑘 ∈ (0..^𝑦)) → ((𝑘(digit‘2)𝑥) · (2↑𝑘)) = ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))
109sumeq2dv 14383 . . . . . . . . . . . 12 (𝑥 = (𝑎 / 2) → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))
116, 10eqeq12d 2636 . . . . . . . . . . 11 (𝑥 = (𝑎 / 2) → (𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)) ↔ (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))))
125, 11imbi12d 334 . . . . . . . . . 10 (𝑥 = (𝑎 / 2) → (((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) ↔ ((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))))
1312rspcva 3297 . . . . . . . . 9 (((𝑎 / 2) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))))
14 simpr 477 . . . . . . . . . . . . . . . . 17 ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) → (#b𝑎) = (𝑦 + 1))
1514oveq1d 6630 . . . . . . . . . . . . . . . 16 ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) → ((#b𝑎) − 1) = ((𝑦 + 1) − 1))
16 nncn 10988 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
17 pncan1 10414 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → ((𝑦 + 1) − 1) = 𝑦)
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦)
1915, 18sylan9eq 2675 . . . . . . . . . . . . . . 15 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((#b𝑎) − 1) = 𝑦)
2019eqeq2d 2631 . . . . . . . . . . . . . 14 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) ↔ (#b‘(𝑎 / 2)) = 𝑦))
21 nnz 11359 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
2221adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
23 fzval3 12493 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℤ → (0...𝑦) = (0..^(𝑦 + 1)))
2422, 23syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0...𝑦) = (0..^(𝑦 + 1)))
2524eqcomd 2627 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0..^(𝑦 + 1)) = (0...𝑦))
2625sumeq1d 14381 . . . . . . . . . . . . . . . . . . . 20 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
27 nnnn0 11259 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
28 elnn0uz 11685 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
2927, 28sylib 208 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ (ℤ‘0))
3029adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ (ℤ‘0))
31 2nn 11145 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℕ
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 2 ∈ ℕ)
33 elfzelz 12300 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (0...𝑦) → 𝑘 ∈ ℤ)
3433adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 𝑘 ∈ ℤ)
35 nnnn0 11259 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
36 nn0rp0 12237 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ ℕ0𝑎 ∈ (0[,)+∞))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℕ → 𝑎 ∈ (0[,)+∞))
3837ad4antlr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 𝑎 ∈ (0[,)+∞))
39 digvalnn0 41715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
4032, 34, 38, 39syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
4140nn0cnd 11313 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℂ)
42 2nn0 11269 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ0
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (0...𝑦) → 2 ∈ ℕ0)
44 elfznn0 12390 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (0...𝑦) → 𝑘 ∈ ℕ0)
4543, 44nn0expcld 12987 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (0...𝑦) → (2↑𝑘) ∈ ℕ0)
4645nn0cnd 11313 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (0...𝑦) → (2↑𝑘) ∈ ℂ)
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (2↑𝑘) ∈ ℂ)
4841, 47mulcld 10020 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) ∈ ℂ)
49 oveq1 6622 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎))
50 oveq2 6623 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 0 → (2↑𝑘) = (2↑0))
5149, 50oveq12d 6633 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · (2↑0)))
52 2cn 11051 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℂ
53 exp0 12820 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ → (2↑0) = 1)
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (2↑0) = 1
5554oveq2i 6626 . . . . . . . . . . . . . . . . . . . . . 22 ((0(digit‘2)𝑎) · (2↑0)) = ((0(digit‘2)𝑎) · 1)
5651, 55syl6eq 2671 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
5730, 48, 56fsum1p 14431 . . . . . . . . . . . . . . . . . . . 20 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (((0(digit‘2)𝑎) · 1) + Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
58 0dig2nn0e 41728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℕ0 ∧ (𝑎 / 2) ∈ ℕ0) → (0(digit‘2)𝑎) = 0)
5935, 1, 58syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → (0(digit‘2)𝑎) = 0)
6059oveq1d 6630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((0(digit‘2)𝑎) · 1) = (0 · 1))
61 1re 9999 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℝ
62 mul02lem2 10173 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 ∈ ℝ → (0 · 1) = 0)
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 · 1) = 0
6460, 63syl6eq 2671 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((0(digit‘2)𝑎) · 1) = 0)
6564adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) → ((0(digit‘2)𝑎) · 1) = 0)
6665adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((0(digit‘2)𝑎) · 1) = 0)
67 1z 11367 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℤ
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 1 ∈ ℤ)
69 0p1e1 11092 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 + 1) = 1
7069, 67eqeltri 2694 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 + 1) ∈ ℤ
7170a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + 1) ∈ ℤ)
7231a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 2 ∈ ℕ)
73 elfzelz 12300 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ((0 + 1)...𝑦) → 𝑘 ∈ ℤ)
7473adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑘 ∈ ℤ)
7537ad4antlr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑎 ∈ (0[,)+∞))
7672, 74, 75, 39syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
7776nn0cnd 11313 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℂ)
78 2cnd 11053 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ((0 + 1)...𝑦) → 2 ∈ ℂ)
79 elfznn 12328 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ)
8079nnnn0d 11311 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ0)
8169oveq1i 6625 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 + 1)...𝑦) = (1...𝑦)
8280, 81eleq2s 2716 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ((0 + 1)...𝑦) → 𝑘 ∈ ℕ0)
8378, 82expcld 12964 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ((0 + 1)...𝑦) → (2↑𝑘) ∈ ℂ)
8483adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (2↑𝑘) ∈ ℂ)
8577, 84mulcld 10020 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) ∈ ℂ)
86 oveq1 6622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = (𝑖 + 1) → (𝑘(digit‘2)𝑎) = ((𝑖 + 1)(digit‘2)𝑎))
87 oveq2 6623 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = (𝑖 + 1) → (2↑𝑘) = (2↑(𝑖 + 1)))
8886, 87oveq12d 6633 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑖 + 1) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
8968, 71, 22, 85, 88fsumshftm 14460 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
9066, 89oveq12d 6633 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (((0(digit‘2)𝑎) · 1) + Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) = (0 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))))
911ad4antr 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑎 / 2) ∈ ℕ0)
9235ad4antlr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑎 ∈ ℕ0)
93 elfzonn0 12469 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ ℕ0)
9493adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ ℕ0)
95 dignn0ehalf 41733 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 / 2) ∈ ℕ0𝑎 ∈ ℕ0𝑖 ∈ ℕ0) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)(𝑎 / 2)))
9691, 92, 94, 95syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)(𝑎 / 2)))
97 2cnd 11053 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (0..^𝑦) → 2 ∈ ℂ)
9897, 93expp1d 12965 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) = ((2↑𝑖) · 2))
9998adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑(𝑖 + 1)) = ((2↑𝑖) · 2))
10096, 99oveq12d 6633 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)))
10131a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 2 ∈ ℕ)
102 elfzoelz 12427 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ ℤ)
103102adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ ℤ)
104 nn0rp0 12237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 / 2) ∈ ℕ0 → (𝑎 / 2) ∈ (0[,)+∞))
1051, 104syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 / 2) ∈ ℕ → (𝑎 / 2) ∈ (0[,)+∞))
106105ad4antr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑎 / 2) ∈ (0[,)+∞))
107 digvalnn0 41715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2 ∈ ℕ ∧ 𝑖 ∈ ℤ ∧ (𝑎 / 2) ∈ (0[,)+∞)) → (𝑖(digit‘2)(𝑎 / 2)) ∈ ℕ0)
108101, 103, 106, 107syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)(𝑎 / 2)) ∈ ℕ0)
109108nn0cnd 11313 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ)
110 2re 11050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℝ
111110a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 ∈ (0..^𝑦) → 2 ∈ ℝ)
112111, 93reexpcld 12981 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℝ)
113112recnd 10028 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℂ)
114113adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑𝑖) ∈ ℂ)
115 2cnd 11053 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 2 ∈ ℂ)
116 mulass 9984 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ ∧ (2↑𝑖) ∈ ℂ ∧ 2 ∈ ℂ) → (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)))
117116eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ ∧ (2↑𝑖) ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
118109, 114, 115, 117syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
119100, 118eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
120119sumeq2dv 14383 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
121 0cn 9992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ ℂ
122 pncan1 10414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (0 ∈ ℂ → ((0 + 1) − 1) = 0)
123121, 122ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((0 + 1) − 1) = 0
124123a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℕ → ((0 + 1) − 1) = 0)
125124oveq1d 6630 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℕ → (((0 + 1) − 1)...(𝑦 − 1)) = (0...(𝑦 − 1)))
126 fzoval 12428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℤ → (0..^𝑦) = (0...(𝑦 − 1)))
127126eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℤ → (0...(𝑦 − 1)) = (0..^𝑦))
12821, 127syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℕ → (0...(𝑦 − 1)) = (0..^𝑦))
129125, 128eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → (((0 + 1) − 1)...(𝑦 − 1)) = (0..^𝑦))
130129adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (((0 + 1) − 1)...(𝑦 − 1)) = (0..^𝑦))
131130sumeq1d 14381 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
132131oveq2d 6631 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = (0 + Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))))
133 fzofi 12729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0..^𝑦) ∈ Fin
134133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0..^𝑦) ∈ Fin)
135102peano2zd 11445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ (0..^𝑦) → (𝑖 + 1) ∈ ℤ)
136135adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖 + 1) ∈ ℤ)
13737ad4antlr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑎 ∈ (0[,)+∞))
138 digvalnn0 41715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℕ ∧ (𝑖 + 1) ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) → ((𝑖 + 1)(digit‘2)𝑎) ∈ ℕ0)
139101, 136, 137, 138syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) ∈ ℕ0)
140139nn0cnd 11313 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) ∈ ℂ)
14142a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ (0..^𝑦) → 2 ∈ ℕ0)
142 peano2nn0 11293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
14393, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ (0..^𝑦) → (𝑖 + 1) ∈ ℕ0)
144141, 143nn0expcld 12987 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) ∈ ℕ0)
145144nn0cnd 11313 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) ∈ ℂ)
146145adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑(𝑖 + 1)) ∈ ℂ)
147140, 146mulcld 10020 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) ∈ ℂ)
148134, 147fsumcl 14413 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) ∈ ℂ)
149148addid2d 10197 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
150132, 149eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
151 2cnd 11053 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ)
152141, 93nn0expcld 12987 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℕ0)
153152nn0cnd 11313 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℂ)
154153adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑𝑖) ∈ ℂ)
155109, 154mulcld 10020 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) ∈ ℂ)
156134, 151, 155fsummulc1 14464 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
157120, 150, 1563eqtr4d 2665 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
15890, 157eqtrd 2655 . . . . . . . . . . . . . . . . . . . 20 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (((0(digit‘2)𝑎) · 1) + Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
15926, 57, 1583eqtrd 2659 . . . . . . . . . . . . . . . . . . 19 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
160159adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2))
161 oveq1 6622 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑖 → (𝑘(digit‘2)(𝑎 / 2)) = (𝑖(digit‘2)(𝑎 / 2)))
162 oveq2 6623 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑖 → (2↑𝑘) = (2↑𝑖))
163161, 162oveq12d 6633 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = ((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)))
164163cbvsumv 14376 . . . . . . . . . . . . . . . . . . . . . . 23 Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖))
165164a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)))
166165eqeq2d 2631 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ↔ (𝑎 / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖))))
167166biimpac 503 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → (𝑎 / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)))
168167eqcomd 2627 . . . . . . . . . . . . . . . . . . 19 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) = (𝑎 / 2))
169168oveq1d 6630 . . . . . . . . . . . . . . . . . 18 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = ((𝑎 / 2) · 2))
170 nncn 10988 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℕ → 𝑎 ∈ ℂ)
171 2cnd 11053 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℕ → 2 ∈ ℂ)
172 2ne0 11073 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
173172a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℕ → 2 ≠ 0)
174170, 171, 173divcan1d 10762 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℕ → ((𝑎 / 2) · 2) = 𝑎)
175174ad3antlr 766 . . . . . . . . . . . . . . . . . . 19 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((𝑎 / 2) · 2) = 𝑎)
176175adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → ((𝑎 / 2) · 2) = 𝑎)
177160, 169, 1763eqtrrd 2660 . . . . . . . . . . . . . . . . 17 (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))
178177ex 450 . . . . . . . . . . . . . . . 16 ((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) → (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
179178imim2i 16 . . . . . . . . . . . . . . 15 (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = 𝑦 → (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
180179com13 88 . . . . . . . . . . . . . 14 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((#b‘(𝑎 / 2)) = 𝑦 → (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
18120, 180sylbid 230 . . . . . . . . . . . . 13 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
182181com23 86 . . . . . . . . . . . 12 (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧ (#b𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
183182exp31 629 . . . . . . . . . . 11 (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → (𝑦 ∈ ℕ → (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
184183com25 99 . . . . . . . . . 10 (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
185184com14 96 . . . . . . . . 9 (((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
18613, 185syl 17 . . . . . . . 8 (((𝑎 / 2) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
187186ex 450 . . . . . . 7 ((𝑎 / 2) ∈ ℕ0 → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
188187com25 99 . . . . . 6 ((𝑎 / 2) ∈ ℕ0 → (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
189188expdcom 455 . . . . 5 ((𝑎 / 2) ∈ ℕ → (𝑎 ∈ ℕ → ((𝑎 / 2) ∈ ℕ0 → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))))
1901, 189mpid 44 . . . 4 ((𝑎 / 2) ∈ ℕ → (𝑎 ∈ ℕ → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
191190impcom 446 . . 3 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → ((#b‘(𝑎 / 2)) = ((#b𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
1923, 191mpd 15 . 2 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))
193192imp 445 1 (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2908  cfv 5857  (class class class)co 6615  Fincfn 7915  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  +∞cpnf 10031  cmin 10226   / cdiv 10644  cn 10980  2c2 11030  0cn0 11252  cz 11337  cuz 11647  [,)cico 12135  ...cfz 12284  ..^cfzo 12422  cexp 12816  Σcsu 14366  #bcblen 41685  digitcdig 41711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ioc 12138  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-fac 13017  df-bc 13046  df-hash 13074  df-shft 13757  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367  df-ef 14742  df-sin 14744  df-cos 14745  df-pi 14747  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cncf 22621  df-limc 23570  df-dv 23571  df-log 24241  df-logb 24437  df-blen 41686  df-dig 41712
This theorem is referenced by:  nn0sumshdiglem1  41737
  Copyright terms: Public domain W3C validator