Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglem1 Structured version   Visualization version   GIF version

Theorem nn0sumshdiglem1 42940
Description: Lemma 1 for nn0sumshdig 42942 (induction step). (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglem1 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Distinct variable group:   𝑘,𝑎,𝑦

Proof of Theorem nn0sumshdiglem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6333 . . . . 5 (𝑎 = 𝑥 → (#b𝑎) = (#b𝑥))
21eqeq1d 2773 . . . 4 (𝑎 = 𝑥 → ((#b𝑎) = 𝑦 ↔ (#b𝑥) = 𝑦))
3 id 22 . . . . 5 (𝑎 = 𝑥𝑎 = 𝑥)
4 oveq2 6804 . . . . . . 7 (𝑎 = 𝑥 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)𝑥))
54oveq1d 6811 . . . . . 6 (𝑎 = 𝑥 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)𝑥) · (2↑𝑘)))
65sumeq2sdv 14643 . . . . 5 (𝑎 = 𝑥 → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))
73, 6eqeq12d 2786 . . . 4 (𝑎 = 𝑥 → (𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))
82, 7imbi12d 333 . . 3 (𝑎 = 𝑥 → (((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))))
98cbvralv 3320 . 2 (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))
10 elnn0 11501 . . . . . 6 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
11 nn0sumshdiglemA 42938 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1211expimpd 441 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
13 nn0sumshdiglemB 42939 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1413expimpd 441 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
15 nneom 42846 . . . . . . . 8 (𝑎 ∈ ℕ → ((𝑎 / 2) ∈ ℕ ∨ ((𝑎 − 1) / 2) ∈ ℕ0))
1612, 14, 15mpjaodan 943 . . . . . . 7 (𝑎 ∈ ℕ → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
17 eqcom 2778 . . . . . . . . . . . . . 14 (1 = (𝑦 + 1) ↔ (𝑦 + 1) = 1)
1817a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) ↔ (𝑦 + 1) = 1))
19 nncn 11234 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
20 1cnd 10262 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 1 ∈ ℂ)
2119, 20, 20addlsub 10653 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ↔ 𝑦 = (1 − 1)))
22 1m1e0 11295 . . . . . . . . . . . . . . 15 (1 − 1) = 0
2322a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (1 − 1) = 0)
2423eqeq2d 2781 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 = (1 − 1) ↔ 𝑦 = 0))
2518, 21, 243bitrd 294 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) ↔ 𝑦 = 0))
26 oveq1 6803 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (𝑦 + 1) = (0 + 1))
2726oveq2d 6812 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (0..^(𝑦 + 1)) = (0..^(0 + 1)))
28 0p1e1 11338 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
2928oveq2i 6807 . . . . . . . . . . . . . . . 16 (0..^(0 + 1)) = (0..^1)
30 fzo01 12758 . . . . . . . . . . . . . . . 16 (0..^1) = {0}
3129, 30eqtri 2793 . . . . . . . . . . . . . . 15 (0..^(0 + 1)) = {0}
3227, 31syl6eq 2821 . . . . . . . . . . . . . 14 (𝑦 = 0 → (0..^(𝑦 + 1)) = {0})
3332sumeq1d 14639 . . . . . . . . . . . . 13 (𝑦 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)))
34 0cn 10238 . . . . . . . . . . . . . 14 0 ∈ ℂ
35 oveq1 6803 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘(digit‘2)0) = (0(digit‘2)0))
36 2nn 11392 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
37 0z 11595 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
38 dig0 42925 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 0 ∈ ℤ) → (0(digit‘2)0) = 0)
3936, 37, 38mp2an 672 . . . . . . . . . . . . . . . . . 18 (0(digit‘2)0) = 0
4035, 39syl6eq 2821 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘(digit‘2)0) = 0)
41 oveq2 6804 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (2↑𝑘) = (2↑0))
42 2cn 11297 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
43 exp0 13071 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℂ → (2↑0) = 1)
4442, 43ax-mp 5 . . . . . . . . . . . . . . . . . 18 (2↑0) = 1
4541, 44syl6eq 2821 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (2↑𝑘) = 1)
4640, 45oveq12d 6814 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = (0 · 1))
47 1re 10245 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
48 mul02lem2 10419 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → (0 · 1) = 0)
4947, 48ax-mp 5 . . . . . . . . . . . . . . . 16 (0 · 1) = 0
5046, 49syl6eq 2821 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = 0)
5150sumsn 14683 . . . . . . . . . . . . . 14 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0)
5234, 34, 51mp2an 672 . . . . . . . . . . . . 13 Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0
5333, 52syl6req 2822 . . . . . . . . . . . 12 (𝑦 = 0 → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))
5425, 53syl6bi 243 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
5554adantl 467 . . . . . . . . . 10 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
56 fveq2 6333 . . . . . . . . . . . . . 14 (𝑎 = 0 → (#b𝑎) = (#b‘0))
57 blen0 42891 . . . . . . . . . . . . . 14 (#b‘0) = 1
5856, 57syl6eq 2821 . . . . . . . . . . . . 13 (𝑎 = 0 → (#b𝑎) = 1)
5958eqeq1d 2773 . . . . . . . . . . . 12 (𝑎 = 0 → ((#b𝑎) = (𝑦 + 1) ↔ 1 = (𝑦 + 1)))
60 id 22 . . . . . . . . . . . . 13 (𝑎 = 0 → 𝑎 = 0)
61 oveq2 6804 . . . . . . . . . . . . . . 15 (𝑎 = 0 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)0))
6261oveq1d 6811 . . . . . . . . . . . . . 14 (𝑎 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)0) · (2↑𝑘)))
6362sumeq2sdv 14643 . . . . . . . . . . . . 13 (𝑎 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))
6460, 63eqeq12d 2786 . . . . . . . . . . . 12 (𝑎 = 0 → (𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))
6559, 64imbi12d 333 . . . . . . . . . . 11 (𝑎 = 0 → (((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))))
6665adantr 466 . . . . . . . . . 10 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))))
6755, 66mpbird 247 . . . . . . . . 9 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
6867a1d 25 . . . . . . . 8 ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
6968expimpd 441 . . . . . . 7 (𝑎 = 0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7016, 69jaoi 846 . . . . . 6 ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7110, 70sylbi 207 . . . . 5 (𝑎 ∈ ℕ0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7271com12 32 . . . 4 ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → (𝑎 ∈ ℕ0 → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
7372ralrimiv 3114 . . 3 ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
7473ex 397 . 2 (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
759, 74syl5bi 232 1 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wral 3061  {csn 4317  cfv 6030  (class class class)co 6796  cc 10140  cr 10141  0cc0 10142  1c1 10143   + caddc 10145   · cmul 10147  cmin 10472   / cdiv 10890  cn 11226  2c2 11276  0cn0 11499  cz 11584  ..^cfzo 12673  cexp 13067  Σcsu 14624  #bcblen 42888  digitcdig 42914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-dvds 15190  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-cxp 24525  df-logb 24724  df-blen 42889  df-dig 42915
This theorem is referenced by:  nn0sumshdiglem2  42941
  Copyright terms: Public domain W3C validator