MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0sub Structured version   Visualization version   GIF version

Theorem nn0sub 11545
Description: Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0sub ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))

Proof of Theorem nn0sub
StepHypRef Expression
1 nn0re 11503 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2 nn0re 11503 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 leloe 10326 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
41, 2, 3syl2an 583 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
5 elnn0 11496 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6 elnn0 11496 . . . . . . . 8 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7 nnsub 11261 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
87ex 397 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
9 nngt0 11251 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < 𝑁)
10 nncn 11230 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1110subid1d 10583 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 0) = 𝑁)
12 id 22 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
1311, 12eqeltrd 2850 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 0) ∈ ℕ)
149, 132thd 255 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ (𝑁 − 0) ∈ ℕ))
15 breq1 4789 . . . . . . . . . . 11 (𝑀 = 0 → (𝑀 < 𝑁 ↔ 0 < 𝑁))
16 oveq2 6801 . . . . . . . . . . . 12 (𝑀 = 0 → (𝑁𝑀) = (𝑁 − 0))
1716eleq1d 2835 . . . . . . . . . . 11 (𝑀 = 0 → ((𝑁𝑀) ∈ ℕ ↔ (𝑁 − 0) ∈ ℕ))
1815, 17bibi12d 334 . . . . . . . . . 10 (𝑀 = 0 → ((𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ) ↔ (0 < 𝑁 ↔ (𝑁 − 0) ∈ ℕ)))
1914, 18syl5ibr 236 . . . . . . . . 9 (𝑀 = 0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
208, 19jaoi 844 . . . . . . . 8 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
216, 20sylbi 207 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
22 nn0nlt0 11521 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → ¬ 𝑀 < 0)
2322pm2.21d 119 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (𝑀 < 0 → (0 − 𝑀) ∈ ℕ))
24 nngt0 11251 . . . . . . . . . 10 ((0 − 𝑀) ∈ ℕ → 0 < (0 − 𝑀))
25 0re 10242 . . . . . . . . . . 11 0 ∈ ℝ
26 posdif 10723 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑀 < 0 ↔ 0 < (0 − 𝑀)))
271, 25, 26sylancl 574 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀 < 0 ↔ 0 < (0 − 𝑀)))
2824, 27syl5ibr 236 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((0 − 𝑀) ∈ ℕ → 𝑀 < 0))
2923, 28impbid 202 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ))
30 breq2 4790 . . . . . . . . 9 (𝑁 = 0 → (𝑀 < 𝑁𝑀 < 0))
31 oveq1 6800 . . . . . . . . . 10 (𝑁 = 0 → (𝑁𝑀) = (0 − 𝑀))
3231eleq1d 2835 . . . . . . . . 9 (𝑁 = 0 → ((𝑁𝑀) ∈ ℕ ↔ (0 − 𝑀) ∈ ℕ))
3330, 32bibi12d 334 . . . . . . . 8 (𝑁 = 0 → ((𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ) ↔ (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ)))
3429, 33syl5ibrcom 237 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑁 = 0 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
3521, 34jaod 846 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
365, 35syl5bi 232 . . . . 5 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
3736imp 393 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
38 nn0cn 11504 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
39 nn0cn 11504 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
40 subeq0 10509 . . . . . 6 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) = 0 ↔ 𝑁 = 𝑀))
4138, 39, 40syl2anr 584 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝑀) = 0 ↔ 𝑁 = 𝑀))
42 eqcom 2778 . . . . 5 (𝑁 = 𝑀𝑀 = 𝑁)
4341, 42syl6rbb 277 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 𝑁 ↔ (𝑁𝑀) = 0))
4437, 43orbi12d 902 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 < 𝑁𝑀 = 𝑁) ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0)))
454, 44bitrd 268 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0)))
46 elnn0 11496 . 2 ((𝑁𝑀) ∈ ℕ0 ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0))
4745, 46syl6bbr 278 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 834   = wceq 1631  wcel 2145   class class class wbr 4786  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138   < clt 10276  cle 10277  cmin 10468  cn 11222  0cn0 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495
This theorem is referenced by:  ltsubnn0  11546  nn0n0n1ge2  11560  elz2  11596  nn0sub2  11640  fz0fzdiffz0  12656  ubmelfzo  12741  repswcshw  13767  swrd2lsw  13905  2swrd2eqwrdeq  13906  psrbagcon  19586  coe1tmmul2  19861  aaliou3lem6  24323  basellem5  25032  crctcshwlkn0lem5  26942  eucrctshift  27423  omndmul3  30053  jm2.27c  38100  binomcxplemnn0  39074  dvnxpaek  40675  subsubelfzo0  41864  fmtnoprmfac2lem1  42006  digexp  42929
  Copyright terms: Public domain W3C validator