Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0srg Structured version   Visualization version   GIF version

Theorem nn0srg 20039
 Description: The nonnegative integers form a semiring (commutative by subcmn 18463). (Contributed by Thierry Arnoux, 1-May-2018.)
Assertion
Ref Expression
nn0srg (ℂflds0) ∈ SRing

Proof of Theorem nn0srg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 19991 . . . 4 fld ∈ Ring
2 ringcmn 18802 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
31, 2ax-mp 5 . . 3 fld ∈ CMnd
4 nn0subm 20024 . . 3 0 ∈ (SubMnd‘ℂfld)
5 eqid 2761 . . . 4 (ℂflds0) = (ℂflds0)
65submcmn 18464 . . 3 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
73, 4, 6mp2an 710 . 2 (ℂflds0) ∈ CMnd
8 nn0ex 11511 . . . 4 0 ∈ V
9 eqid 2761 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
105, 9mgpress 18721 . . . 4 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ V) → ((mulGrp‘ℂfld) ↾s0) = (mulGrp‘(ℂflds0)))
113, 8, 10mp2an 710 . . 3 ((mulGrp‘ℂfld) ↾s0) = (mulGrp‘(ℂflds0))
12 nn0sscn 11510 . . . . 5 0 ⊆ ℂ
13 1nn0 11521 . . . . 5 1 ∈ ℕ0
14 nn0mulcl 11542 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 · 𝑦) ∈ ℕ0)
1514rgen2a 3116 . . . . 5 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0
169ringmgp 18774 . . . . . . 7 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
171, 16ax-mp 5 . . . . . 6 (mulGrp‘ℂfld) ∈ Mnd
18 cnfldbas 19973 . . . . . . . 8 ℂ = (Base‘ℂfld)
199, 18mgpbas 18716 . . . . . . 7 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 19994 . . . . . . . 8 1 = (1r‘ℂfld)
219, 20ringidval 18724 . . . . . . 7 1 = (0g‘(mulGrp‘ℂfld))
22 cnfldmul 19975 . . . . . . . 8 · = (.r‘ℂfld)
239, 22mgpplusg 18714 . . . . . . 7 · = (+g‘(mulGrp‘ℂfld))
2419, 21, 23issubm 17569 . . . . . 6 ((mulGrp‘ℂfld) ∈ Mnd → (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0)))
2517, 24ax-mp 5 . . . . 5 (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0))
2612, 13, 15, 25mpbir3an 1427 . . . 4 0 ∈ (SubMnd‘(mulGrp‘ℂfld))
27 eqid 2761 . . . . 5 ((mulGrp‘ℂfld) ↾s0) = ((mulGrp‘ℂfld) ↾s0)
2827submmnd 17576 . . . 4 (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) → ((mulGrp‘ℂfld) ↾s0) ∈ Mnd)
2926, 28ax-mp 5 . . 3 ((mulGrp‘ℂfld) ↾s0) ∈ Mnd
3011, 29eqeltrri 2837 . 2 (mulGrp‘(ℂflds0)) ∈ Mnd
31 simpl 474 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑥 ∈ ℕ0)
3231nn0cnd 11566 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑥 ∈ ℂ)
33 simprl 811 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
3433nn0cnd 11566 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑦 ∈ ℂ)
35 simprr 813 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑧 ∈ ℕ0)
3635nn0cnd 11566 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑧 ∈ ℂ)
3732, 34, 36adddid 10277 . . . . . 6 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
3832, 34, 36adddird 10278 . . . . . 6 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
3937, 38jca 555 . . . . 5 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4039ralrimivva 3110 . . . 4 (𝑥 ∈ ℕ0 → ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
41 nn0cn 11515 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
4241mul02d 10447 . . . 4 (𝑥 ∈ ℕ0 → (0 · 𝑥) = 0)
4341mul01d 10448 . . . 4 (𝑥 ∈ ℕ0 → (𝑥 · 0) = 0)
4440, 42, 43jca32 559 . . 3 (𝑥 ∈ ℕ0 → (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))
4544rgen 3061 . 2 𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))
465, 18ressbas2 16154 . . . 4 (ℕ0 ⊆ ℂ → ℕ0 = (Base‘(ℂflds0)))
4712, 46ax-mp 5 . . 3 0 = (Base‘(ℂflds0))
48 eqid 2761 . . 3 (mulGrp‘(ℂflds0)) = (mulGrp‘(ℂflds0))
49 cnfldadd 19974 . . . . 5 + = (+g‘ℂfld)
505, 49ressplusg 16216 . . . 4 (ℕ0 ∈ V → + = (+g‘(ℂflds0)))
518, 50ax-mp 5 . . 3 + = (+g‘(ℂflds0))
525, 22ressmulr 16229 . . . 4 (ℕ0 ∈ V → · = (.r‘(ℂflds0)))
538, 52ax-mp 5 . . 3 · = (.r‘(ℂflds0))
54 ringmnd 18777 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
551, 54ax-mp 5 . . . 4 fld ∈ Mnd
56 0nn0 11520 . . . 4 0 ∈ ℕ0
57 cnfld0 19993 . . . . 5 0 = (0g‘ℂfld)
585, 18, 57ress0g 17541 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ℕ0 ⊆ ℂ) → 0 = (0g‘(ℂflds0)))
5955, 56, 12, 58mp3an 1573 . . 3 0 = (0g‘(ℂflds0))
6047, 48, 51, 53, 59issrg 18728 . 2 ((ℂflds0) ∈ SRing ↔ ((ℂflds0) ∈ CMnd ∧ (mulGrp‘(ℂflds0)) ∈ Mnd ∧ ∀𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))))
617, 30, 45, 60mpbir3an 1427 1 (ℂflds0) ∈ SRing
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140  ∀wral 3051  Vcvv 3341   ⊆ wss 3716  ‘cfv 6050  (class class class)co 6815  ℂcc 10147  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  ℕ0cn0 11505  Basecbs 16080   ↾s cress 16081  +gcplusg 16164  .rcmulr 16165  0gc0g 16323  Mndcmnd 17516  SubMndcsubmnd 17556  CMndccmn 18414  mulGrpcmgp 18710  SRingcsrg 18726  Ringcrg 18768  ℂfldccnfld 19969 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-addf 10228  ax-mulf 10229 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-fz 12541  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-0g 16325  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-grp 17647  df-minusg 17648  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-srg 18727  df-ring 18770  df-cring 18771  df-cnfld 19970 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator