Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0prpw Structured version   Visualization version   GIF version

Theorem nn0prpw 32655
Description: Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
nn0prpw ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
Distinct variable groups:   𝑛,𝑝,𝐴   𝐵,𝑛,𝑝

Proof of Theorem nn0prpw
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 breq2 4790 . . . 4 (𝐴 = 𝐵 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
21a1d 25 . . 3 (𝐴 = 𝐵 → ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
32ralrimivv 3119 . 2 (𝐴 = 𝐵 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
4 elnn0 11496 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
5 elnn0 11496 . . . . . . 7 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
6 nnre 11229 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
7 nnre 11229 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
8 lttri2 10322 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
96, 7, 8syl2an 583 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
109ancoms 455 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
11 nn0prpwlem 32654 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)))
12 breq1 4789 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → (𝑘 < 𝐵𝐴 < 𝐵))
13 breq2 4790 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐴 → ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴))
1413bibi1d 332 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐴 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
1514notbid 307 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐴 → (¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
16152rexbidv 3205 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
1712, 16imbi12d 333 . . . . . . . . . . . . . . 15 (𝑘 = 𝐴 → ((𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)) ↔ (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
1817rspcv 3456 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)) → (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
1911, 18mpan9 496 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
20 nn0prpwlem 32654 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)))
21 breq1 4789 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐵 → (𝑘 < 𝐴𝐵 < 𝐴))
22 breq2 4790 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝐵 → ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵))
2322bibi1d 332 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐵 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 𝐴)))
24 bicom 212 . . . . . . . . . . . . . . . . . . . 20 (((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
2523, 24syl6bb 276 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐵 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
2625notbid 307 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐵 → (¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
27262rexbidv 3205 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐵 → (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
2821, 27imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵 → ((𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)) ↔ (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
2928rspcv 3456 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)) → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
3020, 29syl5com 31 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
3130impcom 394 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3219, 31jaod 848 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 < 𝐵𝐵 < 𝐴) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3310, 32sylbid 230 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
34 df-ne 2944 . . . . . . . . . . 11 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
35 rexnal2 3191 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
3633, 34, 353imtr3g 284 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (¬ 𝐴 = 𝐵 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3736con4d 115 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
3837ex 397 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
39 prmunb 15825 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
40 1nn 11233 . . . . . . . . . . . . . . 15 1 ∈ ℕ
41 prmz 15596 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
42 1nn0 11510 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℕ0
43 zexpcl 13082 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℤ ∧ 1 ∈ ℕ0) → (𝑝↑1) ∈ ℤ)
4441, 42, 43sylancl 574 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → (𝑝↑1) ∈ ℤ)
45 dvdsle 15241 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑝↑1) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → (𝑝↑1) ≤ 𝐴))
4644, 45sylan 569 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → (𝑝↑1) ≤ 𝐴))
47 prmnn 15595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
48 nnre 11229 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℕ → 𝑝 ∈ ℝ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
50 reexpcl 13084 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℝ ∧ 1 ∈ ℕ0) → (𝑝↑1) ∈ ℝ)
5149, 42, 50sylancl 574 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → (𝑝↑1) ∈ ℝ)
52 lenlt 10318 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝↑1) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < (𝑝↑1)))
5351, 6, 52syl2an 583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < (𝑝↑1)))
5447nncnd 11238 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 ∈ ℙ → 𝑝 ∈ ℂ)
5554exp1d 13210 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℙ → (𝑝↑1) = 𝑝)
5655adantr 466 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝↑1) = 𝑝)
5756breq2d 4798 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 < (𝑝↑1) ↔ 𝐴 < 𝑝))
5857notbid 307 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (¬ 𝐴 < (𝑝↑1) ↔ ¬ 𝐴 < 𝑝))
5953, 58bitrd 268 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < 𝑝))
6046, 59sylibd 229 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → ¬ 𝐴 < 𝑝))
6160ancoms 455 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝↑1) ∥ 𝐴 → ¬ 𝐴 < 𝑝))
6261con2d 131 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐴 < 𝑝 → ¬ (𝑝↑1) ∥ 𝐴))
63623impia 1109 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ (𝑝↑1) ∥ 𝐴)
64 dvds0 15206 . . . . . . . . . . . . . . . . . . . 20 ((𝑝↑1) ∈ ℤ → (𝑝↑1) ∥ 0)
6544, 64syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → (𝑝↑1) ∥ 0)
66653ad2ant2 1128 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (𝑝↑1) ∥ 0)
67 idd 24 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴)))
6866, 67mpid 44 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴) → (𝑝↑1) ∥ 𝐴))
6963, 68mtod 189 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴))
70 biimpr 210 . . . . . . . . . . . . . . . 16 (((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴))
7169, 70nsyl 137 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0))
72 oveq2 6801 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (𝑝𝑛) = (𝑝↑1))
7372breq1d 4796 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝↑1) ∥ 𝐴))
7472breq1d 4796 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 0 ↔ (𝑝↑1) ∥ 0))
7573, 74bibi12d 334 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)))
7675notbid 307 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)))
7776rspcev 3460 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ ∧ ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
7840, 71, 77sylancr 575 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
79783expia 1114 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐴 < 𝑝 → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
8079reximdva 3165 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (∃𝑝 ∈ ℙ 𝐴 < 𝑝 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
8139, 80mpd 15 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
82 rexnal2 3191 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
8381, 82sylib 208 . . . . . . . . . 10 (𝐴 ∈ ℕ → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
8483pm2.21d 119 . . . . . . . . 9 (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) → 𝐴 = 0))
85 breq2 4790 . . . . . . . . . . . 12 (𝐵 = 0 → ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 0))
8685bibi2d 331 . . . . . . . . . . 11 (𝐵 = 0 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
87862ralbidv 3138 . . . . . . . . . 10 (𝐵 = 0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
88 eqeq2 2782 . . . . . . . . . 10 (𝐵 = 0 → (𝐴 = 𝐵𝐴 = 0))
8987, 88imbi12d 333 . . . . . . . . 9 (𝐵 = 0 → ((∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵) ↔ (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) → 𝐴 = 0)))
9084, 89syl5ibr 236 . . . . . . . 8 (𝐵 = 0 → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
9138, 90jaoi 846 . . . . . . 7 ((𝐵 ∈ ℕ ∨ 𝐵 = 0) → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
925, 91sylbi 207 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
9392com12 32 . . . . 5 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
94 orcom 859 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∨ 𝐵 = 0) ↔ (𝐵 = 0 ∨ 𝐵 ∈ ℕ))
95 df-or 837 . . . . . . . . . 10 ((𝐵 = 0 ∨ 𝐵 ∈ ℕ) ↔ (¬ 𝐵 = 0 → 𝐵 ∈ ℕ))
965, 94, 953bitri 286 . . . . . . . . 9 (𝐵 ∈ ℕ0 ↔ (¬ 𝐵 = 0 → 𝐵 ∈ ℕ))
97 prmunb 15825 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → ∃𝑝 ∈ ℙ 𝐵 < 𝑝)
98 dvdsle 15241 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑝↑1) ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → (𝑝↑1) ≤ 𝐵))
9944, 98sylan 569 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → (𝑝↑1) ≤ 𝐵))
100 lenlt 10318 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝↑1) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑝↑1)))
10151, 7, 100syl2an 583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑝↑1)))
10255adantr 466 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑝↑1) = 𝑝)
103102breq2d 4798 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝐵 < (𝑝↑1) ↔ 𝐵 < 𝑝))
104103notbid 307 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (¬ 𝐵 < (𝑝↑1) ↔ ¬ 𝐵 < 𝑝))
105101, 104bitrd 268 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < 𝑝))
10699, 105sylibd 229 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → ¬ 𝐵 < 𝑝))
107106ancoms 455 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝↑1) ∥ 𝐵 → ¬ 𝐵 < 𝑝))
108107con2d 131 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐵 < 𝑝 → ¬ (𝑝↑1) ∥ 𝐵))
1091083impia 1109 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ (𝑝↑1) ∥ 𝐵)
110653ad2ant2 1128 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (𝑝↑1) ∥ 0)
111 idd 24 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵)))
112110, 111mpid 44 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵) → (𝑝↑1) ∥ 𝐵))
113109, 112mtod 189 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵))
114 biimp 205 . . . . . . . . . . . . . . . 16 (((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵))
115113, 114nsyl 137 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵))
11672breq1d 4796 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝↑1) ∥ 𝐵))
11774, 116bibi12d 334 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)))
118117notbid 307 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)))
119118rspcev 3460 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ ∧ ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
12040, 115, 119sylancr 575 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
1211203expia 1114 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐵 < 𝑝 → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
122121reximdva 3165 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (∃𝑝 ∈ ℙ 𝐵 < 𝑝 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
12397, 122mpd 15 . . . . . . . . . . 11 (𝐵 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
124 rexnal2 3191 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
125123, 124sylib 208 . . . . . . . . . 10 (𝐵 ∈ ℕ → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
126125imim2i 16 . . . . . . . . 9 ((¬ 𝐵 = 0 → 𝐵 ∈ ℕ) → (¬ 𝐵 = 0 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
12796, 126sylbi 207 . . . . . . . 8 (𝐵 ∈ ℕ0 → (¬ 𝐵 = 0 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
128127con4d 115 . . . . . . 7 (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐵 = 0))
129 eqcom 2778 . . . . . . 7 (𝐵 = 0 ↔ 0 = 𝐵)
130128, 129syl6ib 241 . . . . . 6 (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 0 = 𝐵))
131 breq2 4790 . . . . . . . . 9 (𝐴 = 0 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
132131bibi1d 332 . . . . . . . 8 (𝐴 = 0 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
1331322ralbidv 3138 . . . . . . 7 (𝐴 = 0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
134 eqeq1 2775 . . . . . . 7 (𝐴 = 0 → (𝐴 = 𝐵 ↔ 0 = 𝐵))
135133, 134imbi12d 333 . . . . . 6 (𝐴 = 0 → ((∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵) ↔ (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 0 = 𝐵)))
136130, 135syl5ibr 236 . . . . 5 (𝐴 = 0 → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
13793, 136jaoi 846 . . . 4 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
138137imp 393 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ 𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
1394, 138sylanb 570 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
1403, 139impbid2 216 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062   class class class wbr 4786  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   < clt 10276  cle 10277  cn 11222  0cn0 11494  cz 11579  cexp 13067  cdvds 15189  cprime 15592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425  df-prm 15593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator