Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0prpw Structured version   Visualization version   GIF version

Theorem nn0prpw 32293
Description: Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
nn0prpw ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
Distinct variable groups:   𝑛,𝑝,𝐴   𝐵,𝑛,𝑝

Proof of Theorem nn0prpw
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 breq2 4648 . . . 4 (𝐴 = 𝐵 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
21a1d 25 . . 3 (𝐴 = 𝐵 → ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
32ralrimivv 2967 . 2 (𝐴 = 𝐵 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
4 elnn0 11279 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
5 elnn0 11279 . . . . . . 7 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
6 nnre 11012 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
7 nnre 11012 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
8 lttri2 10105 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
96, 7, 8syl2an 494 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
109ancoms 469 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
11 nn0prpwlem 32292 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)))
12 breq1 4647 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → (𝑘 < 𝐵𝐴 < 𝐵))
13 breq2 4648 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐴 → ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴))
1413bibi1d 333 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐴 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
1514notbid 308 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐴 → (¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
16152rexbidv 3053 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
1712, 16imbi12d 334 . . . . . . . . . . . . . . 15 (𝑘 = 𝐴 → ((𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)) ↔ (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
1817rspcv 3300 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)) → (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
1911, 18mpan9 486 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
20 nn0prpwlem 32292 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)))
21 breq1 4647 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐵 → (𝑘 < 𝐴𝐵 < 𝐴))
22 breq2 4648 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝐵 → ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵))
2322bibi1d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐵 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 𝐴)))
24 bicom 212 . . . . . . . . . . . . . . . . . . . 20 (((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
2523, 24syl6bb 276 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐵 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
2625notbid 308 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐵 → (¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
27262rexbidv 3053 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐵 → (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
2821, 27imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵 → ((𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)) ↔ (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
2928rspcv 3300 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)) → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
3020, 29syl5com 31 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
3130impcom 446 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3219, 31jaod 395 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 < 𝐵𝐵 < 𝐴) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3310, 32sylbid 230 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
34 df-ne 2792 . . . . . . . . . . 11 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
35 rexnal2 3039 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
3633, 34, 353imtr3g 284 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (¬ 𝐴 = 𝐵 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3736con4d 114 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
3837ex 450 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
39 prmunb 15599 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
40 1nn 11016 . . . . . . . . . . . . . . 15 1 ∈ ℕ
41 prmz 15370 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
42 1nn0 11293 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℕ0
43 zexpcl 12858 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℤ ∧ 1 ∈ ℕ0) → (𝑝↑1) ∈ ℤ)
4441, 42, 43sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → (𝑝↑1) ∈ ℤ)
45 dvdsle 15013 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑝↑1) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → (𝑝↑1) ≤ 𝐴))
4644, 45sylan 488 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → (𝑝↑1) ≤ 𝐴))
47 prmnn 15369 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
48 nnre 11012 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℕ → 𝑝 ∈ ℝ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
50 reexpcl 12860 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℝ ∧ 1 ∈ ℕ0) → (𝑝↑1) ∈ ℝ)
5149, 42, 50sylancl 693 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → (𝑝↑1) ∈ ℝ)
52 lenlt 10101 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝↑1) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < (𝑝↑1)))
5351, 6, 52syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < (𝑝↑1)))
5447nncnd 11021 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 ∈ ℙ → 𝑝 ∈ ℂ)
5554exp1d 12986 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℙ → (𝑝↑1) = 𝑝)
5655adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝↑1) = 𝑝)
5756breq2d 4656 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 < (𝑝↑1) ↔ 𝐴 < 𝑝))
5857notbid 308 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (¬ 𝐴 < (𝑝↑1) ↔ ¬ 𝐴 < 𝑝))
5953, 58bitrd 268 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < 𝑝))
6046, 59sylibd 229 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → ¬ 𝐴 < 𝑝))
6160ancoms 469 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝↑1) ∥ 𝐴 → ¬ 𝐴 < 𝑝))
6261con2d 129 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐴 < 𝑝 → ¬ (𝑝↑1) ∥ 𝐴))
63623impia 1259 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ (𝑝↑1) ∥ 𝐴)
64 dvds0 14978 . . . . . . . . . . . . . . . . . . . 20 ((𝑝↑1) ∈ ℤ → (𝑝↑1) ∥ 0)
6544, 64syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → (𝑝↑1) ∥ 0)
66653ad2ant2 1081 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (𝑝↑1) ∥ 0)
67 idd 24 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴)))
6866, 67mpid 44 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴) → (𝑝↑1) ∥ 𝐴))
6963, 68mtod 189 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴))
70 biimpr 210 . . . . . . . . . . . . . . . 16 (((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴))
7169, 70nsyl 135 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0))
72 oveq2 6643 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (𝑝𝑛) = (𝑝↑1))
7372breq1d 4654 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝↑1) ∥ 𝐴))
7472breq1d 4654 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 0 ↔ (𝑝↑1) ∥ 0))
7573, 74bibi12d 335 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)))
7675notbid 308 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)))
7776rspcev 3304 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ ∧ ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
7840, 71, 77sylancr 694 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
79783expia 1265 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐴 < 𝑝 → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
8079reximdva 3014 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (∃𝑝 ∈ ℙ 𝐴 < 𝑝 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
8139, 80mpd 15 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
82 rexnal2 3039 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
8381, 82sylib 208 . . . . . . . . . 10 (𝐴 ∈ ℕ → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
8483pm2.21d 118 . . . . . . . . 9 (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) → 𝐴 = 0))
85 breq2 4648 . . . . . . . . . . . 12 (𝐵 = 0 → ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 0))
8685bibi2d 332 . . . . . . . . . . 11 (𝐵 = 0 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
87862ralbidv 2986 . . . . . . . . . 10 (𝐵 = 0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
88 eqeq2 2631 . . . . . . . . . 10 (𝐵 = 0 → (𝐴 = 𝐵𝐴 = 0))
8987, 88imbi12d 334 . . . . . . . . 9 (𝐵 = 0 → ((∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵) ↔ (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) → 𝐴 = 0)))
9084, 89syl5ibr 236 . . . . . . . 8 (𝐵 = 0 → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
9138, 90jaoi 394 . . . . . . 7 ((𝐵 ∈ ℕ ∨ 𝐵 = 0) → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
925, 91sylbi 207 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
9392com12 32 . . . . 5 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
94 orcom 402 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∨ 𝐵 = 0) ↔ (𝐵 = 0 ∨ 𝐵 ∈ ℕ))
95 df-or 385 . . . . . . . . . 10 ((𝐵 = 0 ∨ 𝐵 ∈ ℕ) ↔ (¬ 𝐵 = 0 → 𝐵 ∈ ℕ))
965, 94, 953bitri 286 . . . . . . . . 9 (𝐵 ∈ ℕ0 ↔ (¬ 𝐵 = 0 → 𝐵 ∈ ℕ))
97 prmunb 15599 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → ∃𝑝 ∈ ℙ 𝐵 < 𝑝)
98 dvdsle 15013 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑝↑1) ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → (𝑝↑1) ≤ 𝐵))
9944, 98sylan 488 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → (𝑝↑1) ≤ 𝐵))
100 lenlt 10101 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝↑1) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑝↑1)))
10151, 7, 100syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑝↑1)))
10255adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑝↑1) = 𝑝)
103102breq2d 4656 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝐵 < (𝑝↑1) ↔ 𝐵 < 𝑝))
104103notbid 308 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (¬ 𝐵 < (𝑝↑1) ↔ ¬ 𝐵 < 𝑝))
105101, 104bitrd 268 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < 𝑝))
10699, 105sylibd 229 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → ¬ 𝐵 < 𝑝))
107106ancoms 469 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝↑1) ∥ 𝐵 → ¬ 𝐵 < 𝑝))
108107con2d 129 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐵 < 𝑝 → ¬ (𝑝↑1) ∥ 𝐵))
1091083impia 1259 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ (𝑝↑1) ∥ 𝐵)
110653ad2ant2 1081 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (𝑝↑1) ∥ 0)
111 idd 24 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵)))
112110, 111mpid 44 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵) → (𝑝↑1) ∥ 𝐵))
113109, 112mtod 189 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵))
114 biimp 205 . . . . . . . . . . . . . . . 16 (((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵))
115113, 114nsyl 135 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵))
11672breq1d 4654 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝↑1) ∥ 𝐵))
11774, 116bibi12d 335 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)))
118117notbid 308 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)))
119118rspcev 3304 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ ∧ ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
12040, 115, 119sylancr 694 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
1211203expia 1265 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐵 < 𝑝 → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
122121reximdva 3014 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (∃𝑝 ∈ ℙ 𝐵 < 𝑝 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
12397, 122mpd 15 . . . . . . . . . . 11 (𝐵 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
124 rexnal2 3039 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
125123, 124sylib 208 . . . . . . . . . 10 (𝐵 ∈ ℕ → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
126125imim2i 16 . . . . . . . . 9 ((¬ 𝐵 = 0 → 𝐵 ∈ ℕ) → (¬ 𝐵 = 0 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
12796, 126sylbi 207 . . . . . . . 8 (𝐵 ∈ ℕ0 → (¬ 𝐵 = 0 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
128127con4d 114 . . . . . . 7 (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐵 = 0))
129 eqcom 2627 . . . . . . 7 (𝐵 = 0 ↔ 0 = 𝐵)
130128, 129syl6ib 241 . . . . . 6 (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 0 = 𝐵))
131 breq2 4648 . . . . . . . . 9 (𝐴 = 0 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
132131bibi1d 333 . . . . . . . 8 (𝐴 = 0 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
1331322ralbidv 2986 . . . . . . 7 (𝐴 = 0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
134 eqeq1 2624 . . . . . . 7 (𝐴 = 0 → (𝐴 = 𝐵 ↔ 0 = 𝐵))
135133, 134imbi12d 334 . . . . . 6 (𝐴 = 0 → ((∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵) ↔ (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 0 = 𝐵)))
136130, 135syl5ibr 236 . . . . 5 (𝐴 = 0 → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
13793, 136jaoi 394 . . . 4 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
138137imp 445 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ 𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
1394, 138sylanb 489 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
1403, 139impbid2 216 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910   class class class wbr 4644  (class class class)co 6635  cr 9920  0cc0 9921  1c1 9922   < clt 10059  cle 10060  cn 11005  0cn0 11277  cz 11362  cexp 12843  cdvds 14964  cprime 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-fz 12312  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-dvds 14965  df-gcd 15198  df-prm 15367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator