![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0p1elfzo | Structured version Visualization version GIF version |
Description: A nonnegative integer increased by 1 which is less than or equal to another integer is an element of a half-open range of integers. (Contributed by AV, 27-Feb-2021.) |
Ref | Expression |
---|---|
nn0p1elfzo | ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ltp1le 11636 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 < 𝑁 ↔ (𝐾 + 1) ≤ 𝑁)) | |
2 | 1 | biimp3ar 1580 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 < 𝑁) |
3 | simpl1 1226 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℕ0) | |
4 | simpr 471 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
5 | 4 | adantr 466 | . . . . . 6 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ0) |
6 | nn0ge0 11519 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
7 | 6 | adantr 466 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝐾) |
8 | 0re 10241 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
9 | nn0re 11502 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ) | |
10 | nn0re 11502 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
11 | lelttr 10329 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝐾 ∧ 𝐾 < 𝑁) → 0 < 𝑁)) | |
12 | 8, 9, 10, 11 | mp3an3an 1577 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((0 ≤ 𝐾 ∧ 𝐾 < 𝑁) → 0 < 𝑁)) |
13 | 7, 12 | mpand 667 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 < 𝑁 → 0 < 𝑁)) |
14 | 13 | imp 393 | . . . . . 6 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 0 < 𝑁) |
15 | elnnnn0b 11538 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) | |
16 | 5, 14, 15 | sylanbrc 564 | . . . . 5 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ) |
17 | 16 | 3adantl3 1172 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ) |
18 | simpr 471 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁) | |
19 | 3, 17, 18 | 3jca 1121 | . . 3 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) |
20 | 2, 19 | mpdan 659 | . 2 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) |
21 | elfzo0 12716 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) | |
22 | 20, 21 | sylibr 224 | 1 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 ∈ wcel 2144 class class class wbr 4784 (class class class)co 6792 ℝcr 10136 0cc0 10137 1c1 10138 + caddc 10140 < clt 10275 ≤ cle 10276 ℕcn 11221 ℕ0cn0 11493 ..^cfzo 12672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-fzo 12673 |
This theorem is referenced by: wwlksnextproplem1 27051 eupth2lem3 27413 |
Copyright terms: Public domain | W3C validator |