MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opthlem2 Structured version   Visualization version   GIF version

Theorem nn0opthlem2 13260
Description: Lemma for nn0opthi 13261. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by Scott Fenton, 8-Sep-2010.)
Hypotheses
Ref Expression
nn0opth.1 𝐴 ∈ ℕ0
nn0opth.2 𝐵 ∈ ℕ0
nn0opth.3 𝐶 ∈ ℕ0
nn0opth.4 𝐷 ∈ ℕ0
Assertion
Ref Expression
nn0opthlem2 ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))

Proof of Theorem nn0opthlem2
StepHypRef Expression
1 nn0opth.1 . . . . 5 𝐴 ∈ ℕ0
2 nn0opth.2 . . . . 5 𝐵 ∈ ℕ0
31, 2nn0addcli 11532 . . . 4 (𝐴 + 𝐵) ∈ ℕ0
4 nn0opth.3 . . . 4 𝐶 ∈ ℕ0
53, 4nn0opthlem1 13259 . . 3 ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶))
62nn0rei 11505 . . . . . 6 𝐵 ∈ ℝ
76, 1nn0addge2i 11544 . . . . 5 𝐵 ≤ (𝐴 + 𝐵)
83, 2nn0lele2xi 11550 . . . . . 6 (𝐵 ≤ (𝐴 + 𝐵) → 𝐵 ≤ (2 · (𝐴 + 𝐵)))
9 2re 11292 . . . . . . . 8 2 ∈ ℝ
103nn0rei 11505 . . . . . . . 8 (𝐴 + 𝐵) ∈ ℝ
119, 10remulcli 10256 . . . . . . 7 (2 · (𝐴 + 𝐵)) ∈ ℝ
1210, 10remulcli 10256 . . . . . . 7 ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ
136, 11, 12leadd2i 10786 . . . . . 6 (𝐵 ≤ (2 · (𝐴 + 𝐵)) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
148, 13sylib 208 . . . . 5 (𝐵 ≤ (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
157, 14ax-mp 5 . . . 4 (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))
1612, 6readdcli 10255 . . . . 5 (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ
1712, 11readdcli 10255 . . . . 5 (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ
184nn0rei 11505 . . . . . 6 𝐶 ∈ ℝ
1918, 18remulcli 10256 . . . . 5 (𝐶 · 𝐶) ∈ ℝ
2016, 17, 19lelttri 10366 . . . 4 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
2115, 20mpan 670 . . 3 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
225, 21sylbi 207 . 2 ((𝐴 + 𝐵) < 𝐶 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
23 nn0opth.4 . . . 4 𝐷 ∈ ℕ0
2419, 23nn0addge1i 11543 . . 3 (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷)
2523nn0rei 11505 . . . . 5 𝐷 ∈ ℝ
2619, 25readdcli 10255 . . . 4 ((𝐶 · 𝐶) + 𝐷) ∈ ℝ
2716, 19, 26ltletri 10367 . . 3 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) ∧ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷))
2824, 27mpan2 671 . 2 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷))
2916, 26ltnei 10363 . 2 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
3022, 28, 293syl 18 1 ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2145  wne 2943   class class class wbr 4786  (class class class)co 6793   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  2c2 11272  0cn0 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-seq 13009  df-exp 13068
This theorem is referenced by:  nn0opthi  13261
  Copyright terms: Public domain W3C validator