MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opth2 Structured version   Visualization version   GIF version

Theorem nn0opth2 13263
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthi 13261. (Contributed by NM, 22-Jul-2004.)
Assertion
Ref Expression
nn0opth2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem nn0opth2
StepHypRef Expression
1 oveq1 6800 . . . . . 6 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵))
21oveq1d 6808 . . . . 5 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → ((𝐴 + 𝐵)↑2) = ((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2))
32oveq1d 6808 . . . 4 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (((𝐴 + 𝐵)↑2) + 𝐵) = (((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵))
43eqeq1d 2773 . . 3 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷)))
5 eqeq1 2775 . . . 4 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (𝐴 = 𝐶 ↔ if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶))
65anbi1d 615 . . 3 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → ((𝐴 = 𝐶𝐵 = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷)))
74, 6bibi12d 334 . 2 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷))))
8 oveq2 6801 . . . . . 6 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0)))
98oveq1d 6808 . . . . 5 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) = ((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2))
10 id 22 . . . . 5 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → 𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0))
119, 10oveq12d 6811 . . . 4 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)))
1211eqeq1d 2773 . . 3 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷)))
13 eqeq1 2775 . . . 4 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (𝐵 = 𝐷 ↔ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷))
1413anbi2d 614 . . 3 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)))
1512, 14bibi12d 334 . 2 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (((((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷))))
16 oveq1 6800 . . . . . 6 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (𝐶 + 𝐷) = (if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷))
1716oveq1d 6808 . . . . 5 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → ((𝐶 + 𝐷)↑2) = ((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2))
1817oveq1d 6808 . . . 4 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (((𝐶 + 𝐷)↑2) + 𝐷) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷))
1918eqeq2d 2781 . . 3 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷)))
20 eqeq2 2782 . . . 4 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ↔ if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0)))
2120anbi1d 615 . . 3 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)))
2219, 21bibi12d 334 . 2 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷))))
23 oveq2 6801 . . . . . 6 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷) = (if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0)))
2423oveq1d 6808 . . . . 5 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → ((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) = ((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2))
25 id 22 . . . . 5 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → 𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0))
2624, 25oveq12d 6811 . . . 4 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0)))
2726eqeq2d 2781 . . 3 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0))))
28 eqeq2 2782 . . . 4 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷 ↔ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0)))
2928anbi2d 614 . . 3 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0))))
3027, 29bibi12d 334 . 2 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0)) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0)))))
31 0nn0 11509 . . . 4 0 ∈ ℕ0
3231elimel 4289 . . 3 if(𝐴 ∈ ℕ0, 𝐴, 0) ∈ ℕ0
3331elimel 4289 . . 3 if(𝐵 ∈ ℕ0, 𝐵, 0) ∈ ℕ0
3431elimel 4289 . . 3 if(𝐶 ∈ ℕ0, 𝐶, 0) ∈ ℕ0
3531elimel 4289 . . 3 if(𝐷 ∈ ℕ0, 𝐷, 0) ∈ ℕ0
3632, 33, 34, 35nn0opth2i 13262 . 2 ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0)) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0)))
377, 15, 22, 30, 36dedth4h 4281 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  ifcif 4225  (class class class)co 6793  0cc0 10138   + caddc 10141  2c2 11272  0cn0 11494  cexp 13067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-seq 13009  df-exp 13068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator