![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0o1gt2ALTV | Structured version Visualization version GIF version |
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
Ref | Expression |
---|---|
nn0o1gt2ALTV | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11506 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | elnn1uz2 11978 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
3 | orc 399 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁)) | |
4 | 3 | a1d 25 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
5 | 2z 11621 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
6 | 5 | eluz1i 11907 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) |
7 | 2re 11302 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
8 | 7 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
9 | zre 11593 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
10 | 8, 9 | leloed 10392 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁))) |
11 | olc 398 | . . . . . . . . . . 11 ⊢ (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁)) | |
12 | 11 | a1d 25 | . . . . . . . . . 10 ⊢ (2 < 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
13 | eleq1 2827 | . . . . . . . . . . . 12 ⊢ (𝑁 = 2 → (𝑁 ∈ Odd ↔ 2 ∈ Odd )) | |
14 | 13 | eqcoms 2768 | . . . . . . . . . . 11 ⊢ (2 = 𝑁 → (𝑁 ∈ Odd ↔ 2 ∈ Odd )) |
15 | 2noddALTV 42132 | . . . . . . . . . . . 12 ⊢ 2 ∉ Odd | |
16 | df-nel 3036 | . . . . . . . . . . . . 13 ⊢ (2 ∉ Odd ↔ ¬ 2 ∈ Odd ) | |
17 | pm2.21 120 | . . . . . . . . . . . . 13 ⊢ (¬ 2 ∈ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) | |
18 | 16, 17 | sylbi 207 | . . . . . . . . . . . 12 ⊢ (2 ∉ Odd → (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
19 | 15, 18 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (2 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)) |
20 | 14, 19 | syl6bi 243 | . . . . . . . . . 10 ⊢ (2 = 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
21 | 12, 20 | jaoi 393 | . . . . . . . . 9 ⊢ ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
22 | 10, 21 | syl6bi 243 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)))) |
23 | 22 | imp 444 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
24 | 6, 23 | sylbi 207 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
25 | 4, 24 | jaoi 393 | . . . . 5 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
26 | 2, 25 | sylbi 207 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
27 | eleq1 2827 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 ∈ Odd ↔ 0 ∈ Odd )) | |
28 | 0noddALTV 42128 | . . . . . 6 ⊢ 0 ∉ Odd | |
29 | df-nel 3036 | . . . . . . 7 ⊢ (0 ∉ Odd ↔ ¬ 0 ∈ Odd ) | |
30 | pm2.21 120 | . . . . . . 7 ⊢ (¬ 0 ∈ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) | |
31 | 29, 30 | sylbi 207 | . . . . . 6 ⊢ (0 ∉ Odd → (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
32 | 28, 31 | ax-mp 5 | . . . . 5 ⊢ (0 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁)) |
33 | 27, 32 | syl6bi 243 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
34 | 26, 33 | jaoi 393 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
35 | 1, 34 | sylbi 207 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ Odd → (𝑁 = 1 ∨ 2 < 𝑁))) |
36 | 35 | imp 444 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∉ wnel 3035 class class class wbr 4804 ‘cfv 6049 ℝcr 10147 0cc0 10148 1c1 10149 < clt 10286 ≤ cle 10287 ℕcn 11232 2c2 11282 ℕ0cn0 11504 ℤcz 11589 ℤ≥cuz 11899 Odd codd 42066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-n0 11505 df-z 11590 df-uz 11900 df-even 42067 df-odd 42068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |