![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0n0n1ge2 | Structured version Visualization version GIF version |
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
Ref | Expression |
---|---|
nn0n0n1ge2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 11465 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | 1cnd 10219 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
3 | 1, 2, 2 | subsub4d 10586 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1))) |
4 | 1p1e2 11297 | . . . . . 6 ⊢ (1 + 1) = 2 | |
5 | 4 | oveq2i 6812 | . . . . 5 ⊢ (𝑁 − (1 + 1)) = (𝑁 − 2) |
6 | 3, 5 | syl6req 2799 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 2) = ((𝑁 − 1) − 1)) |
7 | 6 | 3ad2ant1 1125 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) = ((𝑁 − 1) − 1)) |
8 | 3simpa 1140 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
9 | elnnne0 11469 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
10 | 8, 9 | sylibr 224 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℕ) |
11 | nnm1nn0 11497 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ0) |
13 | 1, 2 | subeq0ad 10565 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 ↔ 𝑁 = 1)) |
14 | 13 | biimpd 219 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 → 𝑁 = 1)) |
15 | 14 | necon3d 2941 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≠ 1 → (𝑁 − 1) ≠ 0)) |
16 | 15 | imp 444 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0) |
17 | 16 | 3adant2 1123 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0) |
18 | elnnne0 11469 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 − 1) ≠ 0)) | |
19 | 12, 17, 18 | sylanbrc 701 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ) |
20 | nnm1nn0 11497 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((𝑁 − 1) − 1) ∈ ℕ0) |
22 | 7, 21 | eqeltrd 2827 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) ∈ ℕ0) |
23 | 2nn0 11472 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
24 | 23 | jctl 565 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
25 | 24 | 3ad2ant1 1125 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
26 | nn0sub 11506 | . . 3 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0)) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0)) |
28 | 22, 27 | mpbird 247 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 class class class wbr 4792 (class class class)co 6801 0cc0 10099 1c1 10100 + caddc 10102 ≤ cle 10238 − cmin 10429 ℕcn 11183 2c2 11233 ℕ0cn0 11455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-2 11242 df-n0 11456 |
This theorem is referenced by: nn0n0n1ge2b 11522 umgrclwwlkge2 27085 clwwisshclwwslem 27108 nnne1ge2 39972 iccpartiltu 41837 |
Copyright terms: Public domain | W3C validator |