MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0mulcld Structured version   Visualization version   GIF version

Theorem nn0mulcld 11557
Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nn0red.1 (𝜑𝐴 ∈ ℕ0)
nn0addcld.2 (𝜑𝐵 ∈ ℕ0)
Assertion
Ref Expression
nn0mulcld (𝜑 → (𝐴 · 𝐵) ∈ ℕ0)

Proof of Theorem nn0mulcld
StepHypRef Expression
1 nn0red.1 . 2 (𝜑𝐴 ∈ ℕ0)
2 nn0addcld.2 . 2 (𝜑𝐵 ∈ ℕ0)
3 nn0mulcl 11530 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) ∈ ℕ0)
41, 2, 3syl2anc 565 1 (𝜑 → (𝐴 · 𝐵) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2144  (class class class)co 6792   · cmul 10142  0cn0 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-ltxr 10280  df-nn 11222  df-n0 11494
This theorem is referenced by:  quoremnn0ALT  12863  expmulz  13112  faclbnd4lem3  13285  oddge22np1  15280  mulgcd  15472  rpmulgcd2  15576  hashgcdlem  15699  odzdvds  15706  prmreclem3  15828  vdwapf  15882  vdwlem5  15895  vdwlem6  15896  odmodnn0  18165  odmulg  18179  odadd  18459  ablfacrplem  18671  ablfacrp2  18673  2lgslem1c  25338  2lgslem3a  25341  2lgslem3b  25342  2lgslem3c  25343  2lgslem3d  25344  dchrisumlem1  25398  eulerpartlemsv2  30754  eulerpartlemsf  30755  eulerpartlems  30756  eulerpartlemv  30760  eulerpartlemb  30764  breprexplemc  31044  erdsze2lem1  31517  erdsze2lem2  31518  pell1qrge1  37953  jm2.27c  38093  rmxdiophlem  38101  stoweidlem1  40729  wallispilem4  40796  wallispilem5  40797  wallispi2lem2  40800  stirlinglem3  40804  stirlinglem5  40806  stirlinglem7  40808  stirlinglem10  40811  stirlinglem11  40812  etransclem32  40994  etransclem44  41006  etransclem46  41008  fmtnofac2lem  41998  fmtnofac1  42000  2pwp1prm  42021  lighneallem3  42042  ply1mulgsumlem2  42693
  Copyright terms: Public domain W3C validator