![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11507 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nngt0 11262 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
4 | 3 | eqcomd 2767 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
5 | 2, 4 | orim12i 539 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
6 | 1, 5 | sylbi 207 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
7 | 0re 10253 | . . 3 ⊢ 0 ∈ ℝ | |
8 | nn0re 11514 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
9 | leloe 10337 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
10 | 7, 8, 9 | sylancr 698 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
11 | 6, 10 | mpbird 247 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 ℝcr 10148 0cc0 10149 < clt 10287 ≤ cle 10288 ℕcn 11233 ℕ0cn0 11505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-n0 11506 |
This theorem is referenced by: nn0nlt0 11532 nn0ge0i 11533 nn0le0eq0 11534 nn0p1gt0 11535 0mnnnnn0 11538 nn0addge1 11552 nn0addge2 11553 nn0negleid 11558 nn0ge0d 11567 nn0ge0div 11659 xnn0ge0 12181 nn0pnfge0OLD 12182 xnn0xadd0 12291 nn0rp0 12493 xnn0xrge0 12539 0elfz 12651 fz0fzelfz0 12660 fz0fzdiffz0 12663 fzctr 12666 difelfzle 12667 fzoun 12720 nn0p1elfzo 12726 elfzodifsumelfzo 12749 fvinim0ffz 12802 subfzo0 12805 adddivflid 12834 modmuladdnn0 12929 addmodid 12933 modifeq2int 12947 modfzo0difsn 12957 bernneq 13205 bernneq3 13207 faclbnd 13292 faclbnd6 13301 facubnd 13302 bcval5 13320 hashneq0 13368 fi1uzind 13492 brfi1indALT 13495 ccat0 13569 ccat2s1fvw 13635 repswswrd 13752 rprisefaccl 14974 dvdseq 15259 evennn02n 15297 nn0ehalf 15318 nn0oddm1d2 15324 bitsinv1 15387 smuval2 15427 gcdn0gt0 15462 nn0gcdid0 15465 absmulgcd 15489 algcvgblem 15513 algcvga 15515 lcmgcdnn 15547 lcmfun 15581 lcmfass 15582 nonsq 15690 hashgcdlem 15716 odzdvds 15723 pcfaclem 15825 coe1sclmul 19875 coe1sclmul2 19877 prmirredlem 20064 prmirred 20066 fvmptnn04ifb 20879 mdegle0 24057 plypf1 24188 dgrlt 24242 fta1 24283 taylfval 24333 eldmgm 24969 basellem3 25030 bcmono 25223 lgsdinn0 25291 dchrisumlem1 25399 dchrisumlem2 25400 wwlksnextwrd 27037 wwlksnextfun 27038 wwlksnextinj 27039 wwlksnextproplem2 27050 wwlksnextproplem3 27051 nn0sqeq1 29844 xrsmulgzz 30009 hashf2 30477 hasheuni 30478 reprinfz1 31031 faclimlem1 31958 rrntotbnd 33967 pell14qrgt0 37944 pell1qrgaplem 37958 monotoddzzfi 38028 jm2.17a 38048 jm2.22 38083 rmxdiophlem 38103 wallispilem3 40806 stirlinglem7 40819 elfz2z 41854 fz0addge0 41858 elfzlble 41859 2ffzoeq 41867 iccpartigtl 41888 sqrtpwpw2p 41979 flsqrt 42037 nn0e 42137 nn0sumltlt 42657 nn0eo 42851 fllog2 42891 dignn0fr 42924 dignnld 42926 dig1 42931 |
Copyright terms: Public domain | W3C validator |