![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0disj | Structured version Visualization version GIF version |
Description: The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.) |
Ref | Expression |
---|---|
nn0disj | ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3927 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) | |
2 | 1 | simprbi 483 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) |
3 | eluzle 11863 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘) |
5 | eluzel2 11855 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ) | |
6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℤ) |
7 | eluzelz 11860 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → 𝑘 ∈ ℤ) | |
8 | 2, 7 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ℤ) |
9 | zlem1lt 11592 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) | |
10 | 6, 8, 9 | syl2anc 696 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
11 | 4, 10 | mpbid 222 | . . . 4 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘) |
12 | 1 | simplbi 478 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁)) |
13 | elfzle2 12509 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ≤ 𝑁) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ≤ 𝑁) |
15 | 8 | zred 11645 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ℝ) |
16 | elfzel2 12504 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ) | |
17 | 16 | adantr 472 | . . . . . . . . 9 ⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
18 | 1, 17 | sylbi 207 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
19 | 18 | zred 11645 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℝ) |
20 | 15, 19 | lenltd 10346 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑘)) |
21 | 18 | zcnd 11646 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℂ) |
22 | pncan1 10617 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁) |
24 | 23 | eqcomd 2754 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1)) |
25 | 24 | breq1d 4802 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
26 | 25 | notbid 307 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
27 | 20, 26 | bitrd 268 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
28 | 14, 27 | mpbid 222 | . . . 4 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘) |
29 | 11, 28 | pm2.21dd 186 | . . 3 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ∅) |
30 | 29 | ssriv 3736 | . 2 ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ⊆ ∅ |
31 | ss0 4105 | . 2 ⊢ (((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅) | |
32 | 30, 31 | ax-mp 5 | 1 ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ∩ cin 3702 ⊆ wss 3703 ∅c0 4046 class class class wbr 4792 ‘cfv 6037 (class class class)co 6801 ℂcc 10097 0cc0 10099 1c1 10100 + caddc 10102 < clt 10237 ≤ cle 10238 − cmin 10429 ℤcz 11540 ℤ≥cuz 11850 ...cfz 12490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-n0 11456 df-z 11541 df-uz 11851 df-fz 12491 |
This theorem is referenced by: chfacfscmulgsum 20838 chfacfpmmulgsum 20842 nnuzdisj 40038 |
Copyright terms: Public domain | W3C validator |