Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0digval Structured version   Visualization version   GIF version

Theorem nn0digval 42912
Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
nn0digval ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))

Proof of Theorem nn0digval
StepHypRef Expression
1 nn0z 11601 . . 3 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
2 digval 42910 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
31, 2syl3an2 1166 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
4 nncn 11229 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
54anim1i 594 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0))
6 expneg 13074 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
75, 6syl 17 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
873adant3 1125 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵↑-𝐾) = (1 / (𝐵𝐾)))
98oveq1d 6807 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = ((1 / (𝐵𝐾)) · 𝑅))
10 elrege0 12484 . . . . . . . 8 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
11 recn 10227 . . . . . . . . 9 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
1211adantr 466 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℂ)
1310, 12sylbi 207 . . . . . . 7 (𝑅 ∈ (0[,)+∞) → 𝑅 ∈ ℂ)
14133ad2ant3 1128 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ ℂ)
1553adant3 1125 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0))
16 expcl 13084 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℂ)
1715, 16syl 17 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵𝐾) ∈ ℂ)
1843ad2ant1 1126 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ)
19 nnne0 11254 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
20193ad2ant1 1126 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐵 ≠ 0)
2113ad2ant2 1127 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ)
2218, 20, 21expne0d 13220 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐵𝐾) ≠ 0)
2314, 17, 22divrec2d 11006 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝑅 / (𝐵𝐾)) = ((1 / (𝐵𝐾)) · 𝑅))
249, 23eqtr4d 2807 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((𝐵↑-𝐾) · 𝑅) = (𝑅 / (𝐵𝐾)))
2524fveq2d 6336 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (⌊‘((𝐵↑-𝐾) · 𝑅)) = (⌊‘(𝑅 / (𝐵𝐾))))
2625oveq1d 6807 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))
273, 26eqtrd 2804 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵𝐾))) mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137  1c1 10138   · cmul 10142  +∞cpnf 10272  cle 10276  -cneg 10468   / cdiv 10885  cn 11221  0cn0 11493  cz 11578  [,)cico 12381  cfl 12798   mod cmo 12875  cexp 13066  digitcdig 42907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-ico 12385  df-seq 13008  df-exp 13067  df-dig 42908
This theorem is referenced by:  dignnld  42915  dig2nn1st  42917  digexp  42919  0dig2nn0e  42924  0dig2nn0o  42925  dig2bits  42926  dignn0ehalf  42929  dignn0flhalf  42930
  Copyright terms: Public domain W3C validator