Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0archi Structured version   Visualization version   GIF version

Theorem nn0archi 30152
Description: The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.)
Assertion
Ref Expression
nn0archi (ℂflds0) ∈ Archi

Proof of Theorem nn0archi
StepHypRef Expression
1 df-refld 20153 . . . 4 fld = (ℂflds ℝ)
21oveq1i 6823 . . 3 (ℝflds0) = ((ℂflds ℝ) ↾s0)
3 resubdrg 20156 . . . . 5 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
43simpli 476 . . . 4 ℝ ∈ (SubRing‘ℂfld)
5 nn0ssre 11488 . . . 4 0 ⊆ ℝ
6 ressabs 16141 . . . 4 ((ℝ ∈ (SubRing‘ℂfld) ∧ ℕ0 ⊆ ℝ) → ((ℂflds ℝ) ↾s0) = (ℂflds0))
74, 5, 6mp2an 710 . . 3 ((ℂflds ℝ) ↾s0) = (ℂflds0)
82, 7eqtri 2782 . 2 (ℝflds0) = (ℂflds0)
9 retos 20166 . . . 4 fld ∈ Toset
10 rearchi 30151 . . . 4 fld ∈ Archi
119, 10pm3.2i 470 . . 3 (ℝfld ∈ Toset ∧ ℝfld ∈ Archi)
12 nn0subm 20003 . . . 4 0 ∈ (SubMnd‘ℂfld)
13 subrgsubg 18988 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
14 subgsubm 17817 . . . . . 6 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
154, 13, 14mp2b 10 . . . . 5 ℝ ∈ (SubMnd‘ℂfld)
161subsubm 17558 . . . . 5 (ℝ ∈ (SubMnd‘ℂfld) → (ℕ0 ∈ (SubMnd‘ℝfld) ↔ (ℕ0 ∈ (SubMnd‘ℂfld) ∧ ℕ0 ⊆ ℝ)))
1715, 16ax-mp 5 . . . 4 (ℕ0 ∈ (SubMnd‘ℝfld) ↔ (ℕ0 ∈ (SubMnd‘ℂfld) ∧ ℕ0 ⊆ ℝ))
1812, 5, 17mpbir2an 993 . . 3 0 ∈ (SubMnd‘ℝfld)
19 submarchi 30049 . . 3 (((ℝfld ∈ Toset ∧ ℝfld ∈ Archi) ∧ ℕ0 ∈ (SubMnd‘ℝfld)) → (ℝflds0) ∈ Archi)
2011, 18, 19mp2an 710 . 2 (ℝflds0) ∈ Archi
218, 20eqeltrri 2836 1 (ℂflds0) ∈ Archi
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wcel 2139  wss 3715  cfv 6049  (class class class)co 6813  cr 10127  0cn0 11484  s cress 16060  Tosetctos 17234  SubMndcsubmnd 17535  SubGrpcsubg 17789  DivRingcdr 18949  SubRingcsubrg 18978  fldccnfld 19948  fldcrefld 20152  Archicarchi 30040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-seq 12996  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-preset 17129  df-poset 17147  df-plt 17159  df-toset 17235  df-ps 17401  df-tsr 17402  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-cmn 18395  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-field 18952  df-subrg 18980  df-cnfld 19949  df-zring 20021  df-zrh 20054  df-refld 20153  df-omnd 30008  df-ogrp 30009  df-inftm 30041  df-archi 30042  df-orng 30106  df-ofld 30107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator