Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoubi Structured version   Visualization version   GIF version

Theorem nmoubi 27755
 Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmoubi ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑈   𝑥,𝑊   𝑥,𝑌   𝑥,𝑀   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmoubi
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoubi.u . . . . . 6 𝑈 ∈ NrmCVec
2 nmoubi.w . . . . . 6 𝑊 ∈ NrmCVec
3 nmoubi.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 nmoubi.y . . . . . . 7 𝑌 = (BaseSet‘𝑊)
5 nmoubi.l . . . . . . 7 𝐿 = (normCV𝑈)
6 nmoubi.m . . . . . . 7 𝑀 = (normCV𝑊)
7 nmoubi.3 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
83, 4, 5, 6, 7nmooval 27746 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ))
91, 2, 8mp3an12 1454 . . . . 5 (𝑇:𝑋𝑌 → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ))
109breq1d 4695 . . . 4 (𝑇:𝑋𝑌 → ((𝑁𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
1110adantr 480 . . 3 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
124, 6nmosetre 27747 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ)
132, 12mpan 706 . . . . 5 (𝑇:𝑋𝑌 → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ)
14 ressxr 10121 . . . . 5 ℝ ⊆ ℝ*
1513, 14syl6ss 3648 . . . 4 (𝑇:𝑋𝑌 → {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ*)
16 supxrleub 12194 . . . 4 (({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
1715, 16sylan 487 . . 3 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
1811, 17bitrd 268 . 2 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴))
19 eqeq1 2655 . . . . . 6 (𝑦 = 𝑧 → (𝑦 = (𝑀‘(𝑇𝑥)) ↔ 𝑧 = (𝑀‘(𝑇𝑥))))
2019anbi2d 740 . . . . 5 (𝑦 = 𝑧 → (((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥))) ↔ ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥)))))
2120rexbidv 3081 . . . 4 (𝑦 = 𝑧 → (∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥))) ↔ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥)))))
2221ralab 3400 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
23 ralcom4 3255 . . . 4 (∀𝑥𝑋𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
24 ancomst 467 . . . . . . . 8 ((((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ((𝑧 = (𝑀‘(𝑇𝑥)) ∧ (𝐿𝑥) ≤ 1) → 𝑧𝐴))
25 impexp 461 . . . . . . . 8 (((𝑧 = (𝑀‘(𝑇𝑥)) ∧ (𝐿𝑥) ≤ 1) → 𝑧𝐴) ↔ (𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
2624, 25bitri 264 . . . . . . 7 ((((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ (𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
2726albii 1787 . . . . . 6 (∀𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧(𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)))
28 fvex 6239 . . . . . . 7 (𝑀‘(𝑇𝑥)) ∈ V
29 breq1 4688 . . . . . . . 8 (𝑧 = (𝑀‘(𝑇𝑥)) → (𝑧𝐴 ↔ (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3029imbi2d 329 . . . . . . 7 (𝑧 = (𝑀‘(𝑇𝑥)) → (((𝐿𝑥) ≤ 1 → 𝑧𝐴) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
3128, 30ceqsalv 3264 . . . . . 6 (∀𝑧(𝑧 = (𝑀‘(𝑇𝑥)) → ((𝐿𝑥) ≤ 1 → 𝑧𝐴)) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3227, 31bitri 264 . . . . 5 (∀𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3332ralbii 3009 . . . 4 (∀𝑥𝑋𝑧(((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
34 r19.23v 3052 . . . . 5 (∀𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ (∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3534albii 1787 . . . 4 (∀𝑧𝑥𝑋 (((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴) ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3623, 33, 353bitr3i 290 . . 3 (∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑧 = (𝑀‘(𝑇𝑥))) → 𝑧𝐴))
3722, 36bitr4i 267 . 2 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝑋 ((𝐿𝑥) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴))
3818, 37syl6bb 276 1 ((𝑇:𝑋𝑌𝐴 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝐴 ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1521   = wceq 1523   ∈ wcel 2030  {cab 2637  ∀wral 2941  ∃wrex 2942   ⊆ wss 3607   class class class wbr 4685  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  supcsup 8387  ℝcr 9973  1c1 9975  ℝ*cxr 10111   < clt 10112   ≤ cle 10113  NrmCVeccnv 27567  BaseSetcba 27569  normCVcnmcv 27573   normOpOLD cnmoo 27724 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583  df-nmoo 27728 This theorem is referenced by:  nmoub3i  27756  nmobndi  27758  ubthlem2  27855
 Copyright terms: Public domain W3C validator