![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmosetre | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmoo 27728 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmosetre.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmosetre.4 | ⊢ 𝑁 = (normCV‘𝑊) |
Ref | Expression |
---|---|
nmosetre | ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))} ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelrn 6397 | . . . . . . . . 9 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑧 ∈ 𝑋) → (𝑇‘𝑧) ∈ 𝑌) | |
2 | nmosetre.2 | . . . . . . . . . 10 ⊢ 𝑌 = (BaseSet‘𝑊) | |
3 | nmosetre.4 | . . . . . . . . . 10 ⊢ 𝑁 = (normCV‘𝑊) | |
4 | 2, 3 | nvcl 27644 | . . . . . . . . 9 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑧) ∈ 𝑌) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
5 | 1, 4 | sylan2 490 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇:𝑋⟶𝑌 ∧ 𝑧 ∈ 𝑋)) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
6 | 5 | anassrs 681 | . . . . . . 7 ⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) → (𝑁‘(𝑇‘𝑧)) ∈ ℝ) |
7 | eleq1 2718 | . . . . . . 7 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑧)) → (𝑥 ∈ ℝ ↔ (𝑁‘(𝑇‘𝑧)) ∈ ℝ)) | |
8 | 6, 7 | syl5ibr 236 | . . . . . 6 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑧)) → (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) → 𝑥 ∈ ℝ)) |
9 | 8 | impcom 445 | . . . . 5 ⊢ ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 = (𝑁‘(𝑇‘𝑧))) → 𝑥 ∈ ℝ) |
10 | 9 | adantrl 752 | . . . 4 ⊢ ((((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑧 ∈ 𝑋) ∧ ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))) → 𝑥 ∈ ℝ) |
11 | 10 | exp31 629 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑧 ∈ 𝑋 → (((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧))) → 𝑥 ∈ ℝ))) |
12 | 11 | rexlimdv 3059 | . 2 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧))) → 𝑥 ∈ ℝ)) |
13 | 12 | abssdv 3709 | 1 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))} ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 ∃wrex 2942 ⊆ wss 3607 class class class wbr 4685 ⟶wf 5922 ‘cfv 5926 ℝcr 9973 1c1 9975 ≤ cle 10113 NrmCVeccnv 27567 BaseSetcba 27569 normCVcnmcv 27573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-1st 7210 df-2nd 7211 df-vc 27542 df-nv 27575 df-va 27578 df-ba 27579 df-sm 27580 df-0v 27581 df-nmcv 27583 |
This theorem is referenced by: nmoxr 27749 nmooge0 27750 nmorepnf 27751 nmoolb 27754 nmoubi 27755 nmlno0lem 27776 nmopsetretHIL 28851 |
Copyright terms: Public domain | W3C validator |