MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmorepnf Structured version   Visualization version   GIF version

Theorem nmorepnf 27751
Description: The norm of an operator is either real or plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoxr.1 𝑋 = (BaseSet‘𝑈)
nmoxr.2 𝑌 = (BaseSet‘𝑊)
nmoxr.3 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmorepnf ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))

Proof of Theorem nmorepnf
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoxr.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
2 eqid 2651 . . . . 5 (normCV𝑊) = (normCV𝑊)
31, 2nmosetre 27747 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ)
4 nmoxr.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
5 eqid 2651 . . . . . 6 (0vec𝑈) = (0vec𝑈)
6 eqid 2651 . . . . . 6 (normCV𝑈) = (normCV𝑈)
74, 5, 6nmosetn0 27748 . . . . 5 (𝑈 ∈ NrmCVec → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))})
8 ne0i 3954 . . . . 5 (((normCV𝑊)‘(𝑇‘(0vec𝑈))) ∈ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ≠ ∅)
97, 8syl 17 . . . 4 (𝑈 ∈ NrmCVec → {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ≠ ∅)
10 supxrre2 12199 . . . 4 (({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))} ≠ ∅) → (sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ∈ ℝ ↔ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ≠ +∞))
113, 9, 10syl2anr 494 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌)) → (sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ∈ ℝ ↔ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ≠ +∞))
12113impb 1279 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ∈ ℝ ↔ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ≠ +∞))
13 nmoxr.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
144, 1, 6, 2, 13nmooval 27746 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ))
1514eleq1d 2715 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ∈ ℝ))
1614neeq1d 2882 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ≠ +∞ ↔ sup({𝑥 ∣ ∃𝑧𝑋 (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑇𝑧)))}, ℝ*, < ) ≠ +∞))
1712, 15, 163bitr4d 300 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  {cab 2637  wne 2823  wrex 2942  wss 3607  c0 3948   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  supcsup 8387  cr 9973  1c1 9975  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  NrmCVeccnv 27567  BaseSetcba 27569  0veccn0v 27571  normCVcnmcv 27573   normOpOLD cnmoo 27724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-grpo 27475  df-gid 27476  df-ginv 27477  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583  df-nmoo 27728
This theorem is referenced by:  nmoreltpnf  27752  nmogtmnf  27753  nmounbi  27759
  Copyright terms: Public domain W3C validator