HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopub2tALT Structured version   Visualization version   GIF version

Theorem nmopub2tALT 29108
Description: An upper bound for an operator norm. (Contributed by NM, 12-Apr-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
nmopub2tALT ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normop𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmopub2tALT
StepHypRef Expression
1 normcl 28322 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
21ad2antlr 706 . . . . . . . . . 10 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm𝑥) ∈ ℝ)
3 simpllr 760 . . . . . . . . . 10 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4 simpr 471 . . . . . . . . . 10 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm𝑥) ≤ 1)
5 1re 10245 . . . . . . . . . . 11 1 ∈ ℝ
6 lemul2a 11084 . . . . . . . . . . 11 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
75, 6mp3anl2 1567 . . . . . . . . . 10 ((((norm𝑥) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
82, 3, 4, 7syl21anc 1475 . . . . . . . . 9 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
9 ax-1rid 10212 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
109ad2antrl 707 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 1) = 𝐴)
1110ad2antrr 705 . . . . . . . . 9 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · 1) = 𝐴)
128, 11breqtrd 4813 . . . . . . . 8 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ 𝐴)
13 ffvelrn 6502 . . . . . . . . . . . 12 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
14 normcl 28322 . . . . . . . . . . . 12 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1513, 14syl 17 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1615adantlr 694 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
17 remulcl 10227 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → (𝐴 · (norm𝑥)) ∈ ℝ)
181, 17sylan2 580 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
1918adantlr 694 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
2019adantll 693 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
21 simplrl 762 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℝ)
22 letr 10337 . . . . . . . . . 10 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ (𝐴 · (norm𝑥)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (norm‘(𝑇𝑥)) ≤ 𝐴))
2316, 20, 21, 22syl3anc 1476 . . . . . . . . 9 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (norm‘(𝑇𝑥)) ≤ 𝐴))
2423adantr 466 . . . . . . . 8 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (norm‘(𝑇𝑥)) ≤ 𝐴))
2512, 24mpan2d 674 . . . . . . 7 ((((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → (norm‘(𝑇𝑥)) ≤ 𝐴))
2625ex 397 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → ((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → (norm‘(𝑇𝑥)) ≤ 𝐴)))
2726com23 86 . . . . 5 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
2827ralimdva 3111 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
2928imp 393 . . 3 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴))
30 rexr 10291 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
3130adantr 466 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ*)
32 nmopub 29107 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
3331, 32sylan2 580 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((normop𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)))
3433biimpar 463 . . 3 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘(𝑇𝑥)) ≤ 𝐴)) → (normop𝑇) ≤ 𝐴)
3529, 34syldan 579 . 2 (((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normop𝑇) ≤ 𝐴)
36353impa 1100 1 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normop𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061   class class class wbr 4787  wf 6026  cfv 6030  (class class class)co 6796  cr 10141  0cc0 10142  1c1 10143   · cmul 10147  *cxr 10279  cle 10281  chil 28116  normcno 28120  normopcnop 28142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-hilex 28196  ax-hv0cl 28200  ax-hvmul0 28207  ax-hfi 28276  ax-his1 28279  ax-his3 28281  ax-his4 28282
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-hnorm 28165  df-nmop 29038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator