![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmopsetretALT | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmop 28928 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nmopsetretALT | ⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelrn 6472 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) | |
2 | normcl 28212 | . . . . . . . 8 ⊢ ((𝑇‘𝑦) ∈ ℋ → (normℎ‘(𝑇‘𝑦)) ∈ ℝ) | |
3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (normℎ‘(𝑇‘𝑦)) ∈ ℝ) |
4 | eleq1 2791 | . . . . . . 7 ⊢ (𝑥 = (normℎ‘(𝑇‘𝑦)) → (𝑥 ∈ ℝ ↔ (normℎ‘(𝑇‘𝑦)) ∈ ℝ)) | |
5 | 3, 4 | syl5ibr 236 | . . . . . 6 ⊢ (𝑥 = (normℎ‘(𝑇‘𝑦)) → ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℝ)) |
6 | 5 | impcom 445 | . . . . 5 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) → 𝑥 ∈ ℝ) |
7 | 6 | adantrl 754 | . . . 4 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))) → 𝑥 ∈ ℝ) |
8 | 7 | exp31 631 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) → 𝑥 ∈ ℝ))) |
9 | 8 | rexlimdv 3132 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) → 𝑥 ∈ ℝ)) |
10 | 9 | abssdv 3782 | 1 ⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 {cab 2710 ∃wrex 3015 ⊆ wss 3680 class class class wbr 4760 ⟶wf 5997 ‘cfv 6001 ℝcr 10048 1c1 10050 ≤ cle 10188 ℋchil 28006 normℎcno 28010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-hv0cl 28090 ax-hvmul0 28097 ax-hfi 28166 ax-his1 28169 ax-his3 28171 ax-his4 28172 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-sup 8464 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-n0 11406 df-z 11491 df-uz 11801 df-rp 11947 df-seq 12917 df-exp 12976 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-hnorm 28055 |
This theorem is referenced by: nmopub 28997 |
Copyright terms: Public domain | W3C validator |