MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooval Structured version   Visualization version   GIF version

Theorem nmooval 27952
Description: The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1 𝑋 = (BaseSet‘𝑈)
nmoofval.2 𝑌 = (BaseSet‘𝑊)
nmoofval.3 𝐿 = (normCV𝑈)
nmoofval.4 𝑀 = (normCV𝑊)
nmoofval.6 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmooval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
Distinct variable groups:   𝑥,𝑧,𝑈   𝑥,𝑊,𝑧   𝑧,𝑋   𝑥,𝑌   𝑥,𝑇,𝑧
Allowed substitution hints:   𝐿(𝑥,𝑧)   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧)   𝑋(𝑥)   𝑌(𝑧)

Proof of Theorem nmooval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 nmoofval.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
2 fvex 6342 . . . . 5 (BaseSet‘𝑊) ∈ V
31, 2eqeltri 2845 . . . 4 𝑌 ∈ V
4 nmoofval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
5 fvex 6342 . . . . 5 (BaseSet‘𝑈) ∈ V
64, 5eqeltri 2845 . . . 4 𝑋 ∈ V
73, 6elmap 8037 . . 3 (𝑇 ∈ (𝑌𝑚 𝑋) ↔ 𝑇:𝑋𝑌)
8 nmoofval.3 . . . . . 6 𝐿 = (normCV𝑈)
9 nmoofval.4 . . . . . 6 𝑀 = (normCV𝑊)
10 nmoofval.6 . . . . . 6 𝑁 = (𝑈 normOpOLD 𝑊)
114, 1, 8, 9, 10nmoofval 27951 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
1211fveq1d 6334 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑇) = ((𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))‘𝑇))
13 fveq1 6331 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑡𝑧) = (𝑇𝑧))
1413fveq2d 6336 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑀‘(𝑡𝑧)) = (𝑀‘(𝑇𝑧)))
1514eqeq2d 2780 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑥 = (𝑀‘(𝑡𝑧)) ↔ 𝑥 = (𝑀‘(𝑇𝑧))))
1615anbi2d 606 . . . . . . . 8 (𝑡 = 𝑇 → (((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))))
1716rexbidv 3199 . . . . . . 7 (𝑡 = 𝑇 → (∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))))
1817abbidv 2889 . . . . . 6 (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))})
1918supeq1d 8507 . . . . 5 (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
20 eqid 2770 . . . . 5 (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))
21 xrltso 12178 . . . . . 6 < Or ℝ*
2221supex 8524 . . . . 5 sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) ∈ V
2319, 20, 22fvmpt 6424 . . . 4 (𝑇 ∈ (𝑌𝑚 𝑋) → ((𝑡 ∈ (𝑌𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))‘𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
2412, 23sylan9eq 2824 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ (𝑌𝑚 𝑋)) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
257, 24sylan2br 574 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
26253impa 1099 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  {cab 2756  wrex 3061  Vcvv 3349   class class class wbr 4784  cmpt 4861  wf 6027  cfv 6031  (class class class)co 6792  𝑚 cmap 8008  supcsup 8501  1c1 10138  *cxr 10274   < clt 10275  cle 10276  NrmCVeccnv 27773  BaseSetcba 27775  normCVcnmcv 27779   normOpOLD cnmoo 27930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-pre-lttri 10211  ax-pre-lttrn 10212
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-nmoo 27934
This theorem is referenced by:  nmoxr  27955  nmooge0  27956  nmorepnf  27957  nmoolb  27960  nmoubi  27961  nmoo0  27980  nmlno0lem  27982
  Copyright terms: Public domain W3C validator