MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoo0 Structured version   Visualization version   GIF version

Theorem nmoo0 27774
Description: The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoo0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoo0.0 𝑍 = (𝑈 0op 𝑊)
Assertion
Ref Expression
nmoo0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)

Proof of Theorem nmoo0
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2651 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3 nmoo0.0 . . . . 5 𝑍 = (𝑈 0op 𝑊)
41, 2, 30oo 27772 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
5 eqid 2651 . . . . 5 (normCV𝑈) = (normCV𝑈)
6 eqid 2651 . . . . 5 (normCV𝑊) = (normCV𝑊)
7 nmoo0.3 . . . . 5 𝑁 = (𝑈 normOpOLD 𝑊)
81, 2, 5, 6, 7nmooval 27746 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑁𝑍) = sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ))
94, 8mpd3an3 1465 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ))
10 df-sn 4211 . . . . 5 {0} = {𝑥𝑥 = 0}
11 eqid 2651 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
121, 11nvzcl 27617 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ (BaseSet‘𝑈))
1311, 5nvz0 27651 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) = 0)
14 0le1 10589 . . . . . . . . . . 11 0 ≤ 1
1513, 14syl6eqbr 4724 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) ≤ 1)
16 fveq2 6229 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((normCV𝑈)‘𝑧) = ((normCV𝑈)‘(0vec𝑈)))
1716breq1d 4695 . . . . . . . . . . 11 (𝑧 = (0vec𝑈) → (((normCV𝑈)‘𝑧) ≤ 1 ↔ ((normCV𝑈)‘(0vec𝑈)) ≤ 1))
1817rspcev 3340 . . . . . . . . . 10 (((0vec𝑈) ∈ (BaseSet‘𝑈) ∧ ((normCV𝑈)‘(0vec𝑈)) ≤ 1) → ∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1)
1912, 15, 18syl2anc 694 . . . . . . . . 9 (𝑈 ∈ NrmCVec → ∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1)
2019biantrurd 528 . . . . . . . 8 (𝑈 ∈ NrmCVec → (𝑥 = 0 ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
2120adantr 480 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑥 = 0 ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
22 eqid 2651 . . . . . . . . . . . . . . 15 (0vec𝑊) = (0vec𝑊)
231, 22, 30oval 27771 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
24233expa 1284 . . . . . . . . . . . . 13 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
2524fveq2d 6233 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(𝑍𝑧)) = ((normCV𝑊)‘(0vec𝑊)))
2622, 6nvz0 27651 . . . . . . . . . . . . 13 (𝑊 ∈ NrmCVec → ((normCV𝑊)‘(0vec𝑊)) = 0)
2726ad2antlr 763 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(0vec𝑊)) = 0)
2825, 27eqtrd 2685 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(𝑍𝑧)) = 0)
2928eqeq2d 2661 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥 = ((normCV𝑊)‘(𝑍𝑧)) ↔ 𝑥 = 0))
3029anbi2d 740 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧))) ↔ (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
3130rexbidva 3078 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧))) ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
32 r19.41v 3118 . . . . . . . 8 (∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0))
3331, 32syl6rbb 277 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → ((∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0) ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))))
3421, 33bitrd 268 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑥 = 0 ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))))
3534abbidv 2770 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → {𝑥𝑥 = 0} = {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))})
3610, 35syl5req 2698 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))} = {0})
3736supeq1d 8393 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ) = sup({0}, ℝ*, < ))
389, 37eqtrd 2685 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = sup({0}, ℝ*, < ))
39 xrltso 12012 . . 3 < Or ℝ*
40 0xr 10124 . . 3 0 ∈ ℝ*
41 supsn 8419 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4239, 40, 41mp2an 708 . 2 sup({0}, ℝ*, < ) = 0
4338, 42syl6eq 2701 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  {cab 2637  wrex 2942  {csn 4210   class class class wbr 4685   Or wor 5063  wf 5922  cfv 5926  (class class class)co 6690  supcsup 8387  0cc0 9974  1c1 9975  *cxr 10111   < clt 10112  cle 10113  NrmCVeccnv 27567  BaseSetcba 27569  0veccn0v 27571  normCVcnmcv 27573   normOpOLD cnmoo 27724   0op c0o 27726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-grpo 27475  df-gid 27476  df-ginv 27477  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583  df-nmoo 27728  df-0o 27730
This theorem is referenced by:  0blo  27775  nmlno0lem  27776
  Copyright terms: Public domain W3C validator