MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmobndi Structured version   Visualization version   GIF version

Theorem nmobndi 27910
Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmobndi (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
Distinct variable groups:   𝑦,𝑟,𝐿   𝑦,𝑈   𝑦,𝑊   𝑌,𝑟,𝑦   𝑀,𝑟,𝑦   𝑇,𝑟,𝑦   𝑋,𝑟,𝑦   𝑁,𝑟,𝑦
Allowed substitution hints:   𝑈(𝑟)   𝑊(𝑟)

Proof of Theorem nmobndi
StepHypRef Expression
1 leid 10296 . . . 4 ((𝑁𝑇) ∈ ℝ → (𝑁𝑇) ≤ (𝑁𝑇))
2 breq2 4796 . . . . 5 (𝑟 = (𝑁𝑇) → ((𝑁𝑇) ≤ 𝑟 ↔ (𝑁𝑇) ≤ (𝑁𝑇)))
32rspcev 3437 . . . 4 (((𝑁𝑇) ∈ ℝ ∧ (𝑁𝑇) ≤ (𝑁𝑇)) → ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟)
41, 3mpdan 705 . . 3 ((𝑁𝑇) ∈ ℝ → ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟)
5 nmoubi.u . . . . . . 7 𝑈 ∈ NrmCVec
6 nmoubi.w . . . . . . 7 𝑊 ∈ NrmCVec
7 nmoubi.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
8 nmoubi.y . . . . . . . 8 𝑌 = (BaseSet‘𝑊)
9 nmoubi.3 . . . . . . . 8 𝑁 = (𝑈 normOpOLD 𝑊)
107, 8, 9nmoxr 27901 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) ∈ ℝ*)
115, 6, 10mp3an12 1551 . . . . . 6 (𝑇:𝑋𝑌 → (𝑁𝑇) ∈ ℝ*)
1211adantr 472 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ*)
13 simprl 811 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → 𝑟 ∈ ℝ)
147, 8, 9nmogtmnf 27905 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → -∞ < (𝑁𝑇))
155, 6, 14mp3an12 1551 . . . . . 6 (𝑇:𝑋𝑌 → -∞ < (𝑁𝑇))
1615adantr 472 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → -∞ < (𝑁𝑇))
17 simprr 813 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ≤ 𝑟)
18 xrre 12164 . . . . 5 ((((𝑁𝑇) ∈ ℝ*𝑟 ∈ ℝ) ∧ (-∞ < (𝑁𝑇) ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ)
1912, 13, 16, 17, 18syl22anc 1464 . . . 4 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ)
2019rexlimdvaa 3158 . . 3 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟 → (𝑁𝑇) ∈ ℝ))
214, 20impbid2 216 . 2 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟))
22 rexr 10248 . . . 4 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*)
23 nmoubi.l . . . . 5 𝐿 = (normCV𝑈)
24 nmoubi.m . . . . 5 𝑀 = (normCV𝑊)
257, 8, 23, 24, 9, 5, 6nmoubi 27907 . . . 4 ((𝑇:𝑋𝑌𝑟 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝑟 ↔ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2622, 25sylan2 492 . . 3 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → ((𝑁𝑇) ≤ 𝑟 ↔ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2726rexbidva 3175 . 2 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2821, 27bitrd 268 1 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wral 3038  wrex 3039   class class class wbr 4792  wf 6033  cfv 6037  (class class class)co 6801  cr 10098  1c1 10100  -∞cmnf 10235  *cxr 10236   < clt 10237  cle 10238  NrmCVeccnv 27719  BaseSetcba 27721  normCVcnmcv 27725   normOpOLD cnmoo 27876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-map 8013  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8501  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-seq 12967  df-exp 13026  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-grpo 27627  df-gid 27628  df-ginv 27629  df-ablo 27679  df-vc 27694  df-nv 27727  df-va 27730  df-ba 27731  df-sm 27732  df-0v 27733  df-nmcv 27735  df-nmoo 27880
This theorem is referenced by:  nmounbi  27911  nmobndseqi  27914  nmobndseqiALT  27915  htthlem  28054
  Copyright terms: Public domain W3C validator