![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nminv | Structured version Visualization version GIF version |
Description: The norm of a negated element is the same as the norm of the original element. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmf.x | ⊢ 𝑋 = (Base‘𝐺) |
nmf.n | ⊢ 𝑁 = (norm‘𝐺) |
nminv.i | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
nminv | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐼‘𝐴)) = (𝑁‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpgrp 22624 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
2 | 1 | adantr 472 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ Grp) |
3 | nmf.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
4 | eqid 2760 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | 3, 4 | grpidcl 17671 | . . . 4 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
6 | 2, 5 | syl 17 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (0g‘𝐺) ∈ 𝑋) |
7 | nmf.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
8 | eqid 2760 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
9 | eqid 2760 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
10 | 7, 3, 8, 9 | ngpdsr 22630 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → (𝐴(dist‘𝐺)(0g‘𝐺)) = (𝑁‘((0g‘𝐺)(-g‘𝐺)𝐴))) |
11 | 6, 10 | mpd3an3 1574 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝐴(dist‘𝐺)(0g‘𝐺)) = (𝑁‘((0g‘𝐺)(-g‘𝐺)𝐴))) |
12 | 7, 3, 4, 9 | nmval 22615 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴(dist‘𝐺)(0g‘𝐺))) |
13 | 12 | adantl 473 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴(dist‘𝐺)(0g‘𝐺))) |
14 | nminv.i | . . . . 5 ⊢ 𝐼 = (invg‘𝐺) | |
15 | 3, 8, 14, 4 | grpinvval2 17719 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
16 | 1, 15 | sylan 489 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
17 | 16 | fveq2d 6357 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐼‘𝐴)) = (𝑁‘((0g‘𝐺)(-g‘𝐺)𝐴))) |
18 | 11, 13, 17 | 3eqtr4rd 2805 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐼‘𝐴)) = (𝑁‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 distcds 16172 0gc0g 16322 Grpcgrp 17643 invgcminusg 17644 -gcsg 17645 normcnm 22602 NrmGrpcngp 22603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-n0 11505 df-z 11590 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-0g 16324 df-topgen 16326 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-grp 17646 df-minusg 17647 df-sbg 17648 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-top 20921 df-topon 20938 df-topsp 20959 df-bases 20972 df-xms 22346 df-ms 22347 df-nm 22608 df-ngp 22609 |
This theorem is referenced by: nmsub 22648 nmtri 22651 tngngp3 22681 cnncvsabsnegdemo 23185 |
Copyright terms: Public domain | W3C validator |