MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nminv Structured version   Visualization version   GIF version

Theorem nminv 22646
Description: The norm of a negated element is the same as the norm of the original element. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmf.x 𝑋 = (Base‘𝐺)
nmf.n 𝑁 = (norm‘𝐺)
nminv.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
nminv ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁‘(𝐼𝐴)) = (𝑁𝐴))

Proof of Theorem nminv
StepHypRef Expression
1 ngpgrp 22624 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
21adantr 472 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
3 nmf.x . . . . 5 𝑋 = (Base‘𝐺)
4 eqid 2760 . . . . 5 (0g𝐺) = (0g𝐺)
53, 4grpidcl 17671 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
62, 5syl 17 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (0g𝐺) ∈ 𝑋)
7 nmf.n . . . 4 𝑁 = (norm‘𝐺)
8 eqid 2760 . . . 4 (-g𝐺) = (-g𝐺)
9 eqid 2760 . . . 4 (dist‘𝐺) = (dist‘𝐺)
107, 3, 8, 9ngpdsr 22630 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ∧ (0g𝐺) ∈ 𝑋) → (𝐴(dist‘𝐺)(0g𝐺)) = (𝑁‘((0g𝐺)(-g𝐺)𝐴)))
116, 10mpd3an3 1574 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴(dist‘𝐺)(0g𝐺)) = (𝑁‘((0g𝐺)(-g𝐺)𝐴)))
127, 3, 4, 9nmval 22615 . . 3 (𝐴𝑋 → (𝑁𝐴) = (𝐴(dist‘𝐺)(0g𝐺)))
1312adantl 473 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴(dist‘𝐺)(0g𝐺)))
14 nminv.i . . . . 5 𝐼 = (invg𝐺)
153, 8, 14, 4grpinvval2 17719 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) = ((0g𝐺)(-g𝐺)𝐴))
161, 15sylan 489 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐼𝐴) = ((0g𝐺)(-g𝐺)𝐴))
1716fveq2d 6357 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁‘(𝐼𝐴)) = (𝑁‘((0g𝐺)(-g𝐺)𝐴)))
1811, 13, 173eqtr4rd 2805 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁‘(𝐼𝐴)) = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6814  Basecbs 16079  distcds 16172  0gc0g 16322  Grpcgrp 17643  invgcminusg 17644  -gcsg 17645  normcnm 22602  NrmGrpcngp 22603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-0g 16324  df-topgen 16326  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-xms 22346  df-ms 22347  df-nm 22608  df-ngp 22609
This theorem is referenced by:  nmsub  22648  nmtri  22651  tngngp3  22681  cnncvsabsnegdemo  23185
  Copyright terms: Public domain W3C validator