![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmfnval | Structured version Visualization version GIF version |
Description: Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmfnval | ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12178 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | supex 8524 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < ) ∈ V |
3 | ax-hilex 28190 | . 2 ⊢ ℋ ∈ V | |
4 | cnex 10218 | . 2 ⊢ ℂ ∈ V | |
5 | fveq1 6331 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
6 | 5 | fveq2d 6336 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (abs‘(𝑡‘𝑦)) = (abs‘(𝑇‘𝑦))) |
7 | 6 | eqeq2d 2780 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑥 = (abs‘(𝑡‘𝑦)) ↔ 𝑥 = (abs‘(𝑇‘𝑦)))) |
8 | 7 | anbi2d 606 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))))) |
9 | 8 | rexbidv 3199 | . . . 4 ⊢ (𝑡 = 𝑇 → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))))) |
10 | 9 | abbidv 2889 | . . 3 ⊢ (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) |
11 | 10 | supeq1d 8507 | . 2 ⊢ (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
12 | df-nmfn 29038 | . 2 ⊢ normfn = (𝑡 ∈ (ℂ ↑𝑚 ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑦)))}, ℝ*, < )) | |
13 | 2, 3, 4, 11, 12 | fvmptmap 8045 | 1 ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 {cab 2756 ∃wrex 3061 class class class wbr 4784 ⟶wf 6027 ‘cfv 6031 supcsup 8501 ℂcc 10135 1c1 10138 ℝ*cxr 10274 < clt 10275 ≤ cle 10276 abscabs 14181 ℋchil 28110 normℎcno 28114 normfncnmf 28142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-hilex 28190 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-nmfn 29038 |
This theorem is referenced by: nmfnxr 29072 nmfnrepnf 29073 nmfnlb 29117 nmfnleub 29118 nmfn0 29180 nmcfnexi 29244 branmfn 29298 |
Copyright terms: Public domain | W3C validator |