![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmfnsetre | Structured version Visualization version GIF version |
Description: The set in the supremum of the functional norm definition df-nmfn 28832 is a set of reals. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmfnsetre | ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelrn 6397 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℂ) | |
2 | 1 | abscld 14219 | . . . . . . 7 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ∈ ℝ) |
3 | eleq1 2718 | . . . . . . 7 ⊢ (𝑥 = (abs‘(𝑇‘𝑦)) → (𝑥 ∈ ℝ ↔ (abs‘(𝑇‘𝑦)) ∈ ℝ)) | |
4 | 2, 3 | syl5ibr 236 | . . . . . 6 ⊢ (𝑥 = (abs‘(𝑇‘𝑦)) → ((𝑇: ℋ⟶ℂ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℝ)) |
5 | 4 | impcom 445 | . . . . 5 ⊢ (((𝑇: ℋ⟶ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑥 = (abs‘(𝑇‘𝑦))) → 𝑥 ∈ ℝ) |
6 | 5 | adantrl 752 | . . . 4 ⊢ (((𝑇: ℋ⟶ℂ ∧ 𝑦 ∈ ℋ) ∧ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))) → 𝑥 ∈ ℝ) |
7 | 6 | exp31 629 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (𝑦 ∈ ℋ → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) → 𝑥 ∈ ℝ))) |
8 | 7 | rexlimdv 3059 | . 2 ⊢ (𝑇: ℋ⟶ℂ → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) → 𝑥 ∈ ℝ)) |
9 | 8 | abssdv 3709 | 1 ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 ∃wrex 2942 ⊆ wss 3607 class class class wbr 4685 ⟶wf 5922 ‘cfv 5926 ℂcc 9972 ℝcr 9973 1c1 9975 ≤ cle 10113 abscabs 14018 ℋchil 27904 normℎcno 27908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 |
This theorem is referenced by: nmfnxr 28866 nmfnrepnf 28867 nmfnlb 28911 nmfnleub 28912 branmfn 29092 |
Copyright terms: Public domain | W3C validator |