HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnleub2 Structured version   Visualization version   GIF version

Theorem nmfnleub2 28913
Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnleub2 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normfn𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmfnleub2
StepHypRef Expression
1 normcl 28110 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
21ad2antlr 763 . . . . . . . . . 10 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm𝑥) ∈ ℝ)
3 simpllr 815 . . . . . . . . . 10 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4 simpr 476 . . . . . . . . . 10 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (norm𝑥) ≤ 1)
5 1re 10077 . . . . . . . . . . 11 1 ∈ ℝ
6 lemul2a 10916 . . . . . . . . . . 11 ((((norm𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
75, 6mp3anl2 1459 . . . . . . . . . 10 ((((norm𝑥) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
82, 3, 4, 7syl21anc 1365 . . . . . . . . 9 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ (𝐴 · 1))
9 ax-1rid 10044 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
109ad2antrl 764 . . . . . . . . . 10 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 1) = 𝐴)
1110ad2antrr 762 . . . . . . . . 9 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · 1) = 𝐴)
128, 11breqtrd 4711 . . . . . . . 8 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (𝐴 · (norm𝑥)) ≤ 𝐴)
13 ffvelrn 6397 . . . . . . . . . . . 12 ((𝑇: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℂ)
1413abscld 14219 . . . . . . . . . . 11 ((𝑇: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (abs‘(𝑇𝑥)) ∈ ℝ)
1514adantlr 751 . . . . . . . . . 10 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (abs‘(𝑇𝑥)) ∈ ℝ)
16 remulcl 10059 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → (𝐴 · (norm𝑥)) ∈ ℝ)
171, 16sylan2 490 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
1817adantlr 751 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
1918adantll 750 . . . . . . . . . 10 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (𝐴 · (norm𝑥)) ∈ ℝ)
20 simplrl 817 . . . . . . . . . 10 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℝ)
21 letr 10169 . . . . . . . . . 10 (((abs‘(𝑇𝑥)) ∈ ℝ ∧ (𝐴 · (norm𝑥)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2215, 19, 20, 21syl3anc 1366 . . . . . . . . 9 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → (((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2322adantr 480 . . . . . . . 8 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → (((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) ∧ (𝐴 · (norm𝑥)) ≤ 𝐴) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2412, 23mpan2d 710 . . . . . . 7 ((((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) ∧ (norm𝑥) ≤ 1) → ((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → (abs‘(𝑇𝑥)) ≤ 𝐴))
2524ex 449 . . . . . 6 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ≤ 1 → ((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2625com23 86 . . . . 5 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑥 ∈ ℋ) → ((abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2726ralimdva 2991 . . . 4 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥)) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2827imp 444 . . 3 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
29 rexr 10123 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
3029adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ*)
31 nmfnleub 28912 . . . . 5 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
3230, 31sylan2 490 . . . 4 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
3332biimpar 501 . . 3 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)) → (normfn𝑇) ≤ 𝐴)
3428, 33syldan 486 . 2 (((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normfn𝑇) ≤ 𝐴)
35343impa 1278 1 ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normfn𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979  *cxr 10111  cle 10113  abscabs 14018  chil 27904  normcno 27908  normfncnmf 27936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-hilex 27984  ax-hv0cl 27988  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his3 28069  ax-his4 28070
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-hnorm 27953  df-nmfn 28832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator