![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmfnlb | Structured version Visualization version GIF version |
Description: A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmfnlb | ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmfnsetre 29066 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ) | |
2 | ressxr 10295 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
3 | 1, 2 | syl6ss 3756 | . . . 4 ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ*) |
4 | 3 | 3ad2ant1 1128 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ*) |
5 | fveq2 6353 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (normℎ‘𝑦) = (normℎ‘𝐴)) | |
6 | 5 | breq1d 4814 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → ((normℎ‘𝑦) ≤ 1 ↔ (normℎ‘𝐴) ≤ 1)) |
7 | fveq2 6353 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → (𝑇‘𝑦) = (𝑇‘𝐴)) | |
8 | 7 | fveq2d 6357 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (abs‘(𝑇‘𝑦)) = (abs‘(𝑇‘𝐴))) |
9 | 8 | eqeq2d 2770 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → ((abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)))) |
10 | 6, 9 | anbi12d 749 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘𝐴) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴))))) |
11 | eqid 2760 | . . . . . . . 8 ⊢ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)) | |
12 | 11 | biantru 527 | . . . . . . 7 ⊢ ((normℎ‘𝐴) ≤ 1 ↔ ((normℎ‘𝐴) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)))) |
13 | 10, 12 | syl6bbr 278 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))) ↔ (normℎ‘𝐴) ≤ 1)) |
14 | 13 | rspcev 3449 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) |
15 | fvex 6363 | . . . . . 6 ⊢ (abs‘(𝑇‘𝐴)) ∈ V | |
16 | eqeq1 2764 | . . . . . . . 8 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (𝑥 = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) | |
17 | 16 | anbi2d 742 | . . . . . . 7 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))))) |
18 | 17 | rexbidv 3190 | . . . . . 6 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))))) |
19 | 15, 18 | elab 3490 | . . . . 5 ⊢ ((abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) |
20 | 14, 19 | sylibr 224 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) |
21 | 20 | 3adant1 1125 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) |
22 | supxrub 12367 | . . 3 ⊢ (({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) → (abs‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | |
23 | 4, 21, 22 | syl2anc 696 | . 2 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
24 | nmfnval 29065 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | |
25 | 24 | 3ad2ant1 1128 | . 2 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
26 | 23, 25 | breqtrrd 4832 | 1 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 {cab 2746 ∃wrex 3051 ⊆ wss 3715 class class class wbr 4804 ⟶wf 6045 ‘cfv 6049 supcsup 8513 ℂcc 10146 ℝcr 10147 1c1 10149 ℝ*cxr 10285 < clt 10286 ≤ cle 10287 abscabs 14193 ℋchil 28106 normℎcno 28110 normfncnmf 28138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-hilex 28186 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-nmfn 29034 |
This theorem is referenced by: nmfnge0 29116 nmbdfnlbi 29238 nmcfnlbi 29241 |
Copyright terms: Public domain | W3C validator |