![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmf2 | Structured version Visualization version GIF version |
Description: The norm is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
nmf2.n | ⊢ 𝑁 = (norm‘𝑊) |
nmf2.x | ⊢ 𝑋 = (Base‘𝑊) |
nmf2.d | ⊢ 𝐷 = (dist‘𝑊) |
nmf2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
nmf2 | ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf2.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑊) | |
2 | eqid 2760 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
3 | 1, 2 | grpidcl 17651 | . . . . 5 ⊢ (𝑊 ∈ Grp → (0g‘𝑊) ∈ 𝑋) |
4 | metcl 22338 | . . . . . 6 ⊢ ((𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (0g‘𝑊) ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) | |
5 | 4 | 3comr 1120 | . . . . 5 ⊢ (((0g‘𝑊) ∈ 𝑋 ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
6 | 3, 5 | syl3an1 1167 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
7 | 6 | 3expa 1112 | . . 3 ⊢ (((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
8 | eqid 2760 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊))) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊))) | |
9 | 7, 8 | fmptd 6548 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊))):𝑋⟶ℝ) |
10 | nmf2.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
11 | nmf2.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑊) | |
12 | nmf2.e | . . . . 5 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
13 | 10, 1, 2, 11, 12 | nmfval2 22596 | . . . 4 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
14 | 13 | adantr 472 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
15 | 14 | feq1d 6191 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → (𝑁:𝑋⟶ℝ ↔ (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊))):𝑋⟶ℝ)) |
16 | 9, 15 | mpbird 247 | 1 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ↦ cmpt 4881 × cxp 5264 ↾ cres 5268 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ℝcr 10127 Basecbs 16059 distcds 16152 0gc0g 16302 Grpcgrp 17623 Metcme 19934 normcnm 22582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-map 8025 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-met 19942 df-nm 22588 |
This theorem is referenced by: isngp2 22602 isngp3 22603 nmf 22620 |
Copyright terms: Public domain | W3C validator |