MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmdvr Structured version   Visualization version   GIF version

Theorem nmdvr 22521
Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmdvr.x 𝑋 = (Base‘𝑅)
nmdvr.n 𝑁 = (norm‘𝑅)
nmdvr.u 𝑈 = (Unit‘𝑅)
nmdvr.d / = (/r𝑅)
Assertion
Ref Expression
nmdvr (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁𝐴) / (𝑁𝐵)))

Proof of Theorem nmdvr
StepHypRef Expression
1 simpll 805 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NrmRing)
2 simprl 809 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐴𝑋)
3 nrgring 22514 . . . . . 6 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
43ad2antrr 762 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ Ring)
5 simprr 811 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐵𝑈)
6 nmdvr.u . . . . . 6 𝑈 = (Unit‘𝑅)
7 eqid 2651 . . . . . 6 (invr𝑅) = (invr𝑅)
8 nmdvr.x . . . . . 6 𝑋 = (Base‘𝑅)
96, 7, 8ringinvcl 18722 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐵𝑈) → ((invr𝑅)‘𝐵) ∈ 𝑋)
104, 5, 9syl2anc 694 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((invr𝑅)‘𝐵) ∈ 𝑋)
11 nmdvr.n . . . . 5 𝑁 = (norm‘𝑅)
12 eqid 2651 . . . . 5 (.r𝑅) = (.r𝑅)
138, 11, 12nmmul 22515 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋 ∧ ((invr𝑅)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))))
141, 2, 10, 13syl3anc 1366 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))))
15 simplr 807 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NzRing)
1611, 6, 7nminvr 22520 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵𝑈) → (𝑁‘((invr𝑅)‘𝐵)) = (1 / (𝑁𝐵)))
171, 15, 5, 16syl3anc 1366 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘((invr𝑅)‘𝐵)) = (1 / (𝑁𝐵)))
1817oveq2d 6706 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
1914, 18eqtrd 2685 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
20 nmdvr.d . . . . 5 / = (/r𝑅)
218, 12, 6, 7, 20dvrval 18731 . . . 4 ((𝐴𝑋𝐵𝑈) → (𝐴 / 𝐵) = (𝐴(.r𝑅)((invr𝑅)‘𝐵)))
2221adantl 481 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝐴 / 𝐵) = (𝐴(.r𝑅)((invr𝑅)‘𝐵)))
2322fveq2d 6233 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))))
24 nrgngp 22513 . . . . . 6 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
2524ad2antrr 762 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NrmGrp)
268, 11nmcl 22467 . . . . 5 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
2725, 2, 26syl2anc 694 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐴) ∈ ℝ)
2827recnd 10106 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐴) ∈ ℂ)
298, 6unitss 18706 . . . . . 6 𝑈𝑋
3029, 5sseldi 3634 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐵𝑋)
318, 11nmcl 22467 . . . . 5 ((𝑅 ∈ NrmGrp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
3225, 30, 31syl2anc 694 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ∈ ℝ)
3332recnd 10106 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ∈ ℂ)
3411, 6unitnmn0 22519 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵𝑈) → (𝑁𝐵) ≠ 0)
35343expa 1284 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝐵𝑈) → (𝑁𝐵) ≠ 0)
3635adantrl 752 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ≠ 0)
3728, 33, 36divrecd 10842 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((𝑁𝐴) / (𝑁𝐵)) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
3819, 23, 373eqtr4d 2695 1 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁𝐴) / (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   / cdiv 10722  Basecbs 15904  .rcmulr 15989  Ringcrg 18593  Unitcui 18685  invrcinvr 18717  /rcdvr 18728  NzRingcnzr 19305  normcnm 22428  NrmGrpcngp 22429  NrmRingcnrg 22431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ico 12219  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-0g 16149  df-topgen 16151  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-abv 18865  df-nzr 19306  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-xms 22172  df-ms 22173  df-nm 22434  df-ngp 22435  df-nrg 22437
This theorem is referenced by:  qqhnm  30162
  Copyright terms: Public domain W3C validator