MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvcn Structured version   Visualization version   GIF version

Theorem nmcvcn 27859
Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcvcn.1 𝑁 = (normCV𝑈)
nmcvcn.2 𝐶 = (IndMet‘𝑈)
nmcvcn.j 𝐽 = (MetOpen‘𝐶)
nmcvcn.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
nmcvcn (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾))

Proof of Theorem nmcvcn
Dummy variables 𝑒 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 nmcvcn.1 . . 3 𝑁 = (normCV𝑈)
31, 2nvf 27824 . 2 (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶ℝ)
4 simprr 813 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
51, 2nvcl 27825 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁𝑥) ∈ ℝ)
65ex 449 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈) → (𝑁𝑥) ∈ ℝ))
71, 2nvcl 27825 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑁𝑦) ∈ ℝ)
87ex 449 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝑦 ∈ (BaseSet‘𝑈) → (𝑁𝑦) ∈ ℝ))
96, 8anim12d 587 . . . . . . . . . . . 12 (𝑈 ∈ NrmCVec → ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ)))
10 eqid 2760 . . . . . . . . . . . . . 14 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1110remet 22794 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
12 metcl 22338 . . . . . . . . . . . . 13 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) ∧ (𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
1311, 12mp3an1 1560 . . . . . . . . . . . 12 (((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
149, 13syl6 35 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ))
15143impib 1109 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
16 nmcvcn.2 . . . . . . . . . . . 12 𝐶 = (IndMet‘𝑈)
171, 16imsmet 27855 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
18 metcl 22338 . . . . . . . . . . 11 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) ∈ ℝ)
1917, 18syl3an1 1167 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) ∈ ℝ)
20 eqid 2760 . . . . . . . . . . . 12 ( +𝑣𝑈) = ( +𝑣𝑈)
21 eqid 2760 . . . . . . . . . . . 12 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
221, 20, 21, 2nvabs 27836 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (abs‘((𝑁𝑥) − (𝑁𝑦))) ≤ (𝑁‘(𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
2393impib 1109 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ))
2410remetdval 22793 . . . . . . . . . . . 12 (((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) = (abs‘((𝑁𝑥) − (𝑁𝑦))))
2523, 24syl 17 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) = (abs‘((𝑁𝑥) − (𝑁𝑦))))
261, 20, 21, 2, 16imsdval2 27851 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) = (𝑁‘(𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
2722, 25, 263brtr4d 4836 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦))
2815, 19, 27jca31 558 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)))
29283expa 1112 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)))
30 rpre 12032 . . . . . . . 8 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
31 lelttr 10320 . . . . . . . . . . 11 ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ ∧ 𝑒 ∈ ℝ) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦) ∧ (𝑥𝐶𝑦) < 𝑒) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
32313expa 1112 . . . . . . . . . 10 (((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ 𝑒 ∈ ℝ) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦) ∧ (𝑥𝐶𝑦) < 𝑒) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3332expdimp 452 . . . . . . . . 9 ((((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ 𝑒 ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3433an32s 881 . . . . . . . 8 ((((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)) ∧ 𝑒 ∈ ℝ) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3529, 30, 34syl2an 495 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) ∧ 𝑒 ∈ ℝ+) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3635ex 449 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑒 ∈ ℝ+ → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
3736ralrimdva 3107 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑒 ∈ ℝ+ → ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
3837impr 650 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
39 breq2 4808 . . . . . . 7 (𝑑 = 𝑒 → ((𝑥𝐶𝑦) < 𝑑 ↔ (𝑥𝐶𝑦) < 𝑒))
4039imbi1d 330 . . . . . 6 (𝑑 = 𝑒 → (((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒) ↔ ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
4140ralbidv 3124 . . . . 5 (𝑑 = 𝑒 → (∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒) ↔ ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
4241rspcev 3449 . . . 4 ((𝑒 ∈ ℝ+ ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
434, 38, 42syl2anc 696 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → ∃𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
4443ralrimivva 3109 . 2 (𝑈 ∈ NrmCVec → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
451, 16imsxmet 27856 . . 3 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
4610rexmet 22795 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
47 nmcvcn.j . . . 4 𝐽 = (MetOpen‘𝐶)
48 nmcvcn.k . . . . 5 𝐾 = (topGen‘ran (,))
49 eqid 2760 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
5010, 49tgioo 22800 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
5148, 50eqtri 2782 . . . 4 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
5247, 51metcn 22549 . . 3 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)) → (𝑁 ∈ (𝐽 Cn 𝐾) ↔ (𝑁:(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))))
5345, 46, 52sylancl 697 . 2 (𝑈 ∈ NrmCVec → (𝑁 ∈ (𝐽 Cn 𝐾) ↔ (𝑁:(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))))
543, 44, 53mpbir2and 995 1 (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051   class class class wbr 4804   × cxp 5264  ran crn 5267  cres 5268  ccom 5270  wf 6045  cfv 6049  (class class class)co 6813  cr 10127  1c1 10129   < clt 10266  cle 10267  cmin 10458  -cneg 10459  +crp 12025  (,)cioo 12368  abscabs 14173  topGenctg 16300  ∞Metcxmt 19933  Metcme 19934  MetOpencmopn 19938   Cn ccn 21230  NrmCVeccnv 27748   +𝑣 cpv 27749  BaseSetcba 27750   ·𝑠OLD cns 27751  normCVcnmcv 27754  IndMetcims 27755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-topgen 16306  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-top 20901  df-topon 20918  df-bases 20952  df-cn 21233  df-cnp 21234  df-grpo 27656  df-gid 27657  df-ginv 27658  df-gdiv 27659  df-ablo 27708  df-vc 27723  df-nv 27756  df-va 27759  df-ba 27760  df-sm 27761  df-0v 27762  df-vs 27763  df-nmcv 27764  df-ims 27765
This theorem is referenced by:  nmcnc  27860
  Copyright terms: Public domain W3C validator