HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnexi Structured version   Visualization version   GIF version

Theorem nmcfnexi 29240
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1 𝑇 ∈ LinFn
nmcfnex.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nmcfnexi (normfn𝑇) ∈ ℝ

Proof of Theorem nmcfnexi
Dummy variables 𝑥 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcfnex.2 . . . 4 𝑇 ∈ ContFn
2 ax-hv0cl 28190 . . . 4 0 ∈ ℋ
3 1rp 12049 . . . 4 1 ∈ ℝ+
4 cnfnc 29119 . . . 4 ((𝑇 ∈ ContFn ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1))
51, 2, 3, 4mp3an 1573 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1)
6 hvsub0 28263 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑧 0) = 𝑧)
76fveq2d 6357 . . . . . . 7 (𝑧 ∈ ℋ → (norm‘(𝑧 0)) = (norm𝑧))
87breq1d 4814 . . . . . 6 (𝑧 ∈ ℋ → ((norm‘(𝑧 0)) < 𝑦 ↔ (norm𝑧) < 𝑦))
9 nmcfnex.1 . . . . . . . . . . 11 𝑇 ∈ LinFn
109lnfn0i 29231 . . . . . . . . . 10 (𝑇‘0) = 0
1110oveq2i 6825 . . . . . . . . 9 ((𝑇𝑧) − (𝑇‘0)) = ((𝑇𝑧) − 0)
129lnfnfi 29230 . . . . . . . . . . 11 𝑇: ℋ⟶ℂ
1312ffvelrni 6522 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℂ)
1413subid1d 10593 . . . . . . . . 9 (𝑧 ∈ ℋ → ((𝑇𝑧) − 0) = (𝑇𝑧))
1511, 14syl5eq 2806 . . . . . . . 8 (𝑧 ∈ ℋ → ((𝑇𝑧) − (𝑇‘0)) = (𝑇𝑧))
1615fveq2d 6357 . . . . . . 7 (𝑧 ∈ ℋ → (abs‘((𝑇𝑧) − (𝑇‘0))) = (abs‘(𝑇𝑧)))
1716breq1d 4814 . . . . . 6 (𝑧 ∈ ℋ → ((abs‘((𝑇𝑧) − (𝑇‘0))) < 1 ↔ (abs‘(𝑇𝑧)) < 1))
188, 17imbi12d 333 . . . . 5 (𝑧 ∈ ℋ → (((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1)))
1918ralbiia 3117 . . . 4 (∀𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∀𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1))
2019rexbii 3179 . . 3 (∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm‘(𝑧 0)) < 𝑦 → (abs‘((𝑇𝑧) − (𝑇‘0))) < 1) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1))
215, 20mpbi 220 . 2 𝑦 ∈ ℝ+𝑧 ∈ ℋ ((norm𝑧) < 𝑦 → (abs‘(𝑇𝑧)) < 1)
22 nmfnval 29065 . . 3 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
2312, 22ax-mp 5 . 2 (normfn𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑚 = (abs‘(𝑇𝑥)))}, ℝ*, < )
2412ffvelrni 6522 . . 3 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℂ)
2524abscld 14394 . 2 (𝑥 ∈ ℋ → (abs‘(𝑇𝑥)) ∈ ℝ)
2610fveq2i 6356 . . 3 (abs‘(𝑇‘0)) = (abs‘0)
27 abs0 14244 . . 3 (abs‘0) = 0
2826, 27eqtri 2782 . 2 (abs‘(𝑇‘0)) = 0
29 rpcn 12054 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℂ)
309lnfnmuli 29233 . . . . 5 (((𝑦 / 2) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3129, 30sylan 489 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (𝑇‘((𝑦 / 2) · 𝑥)) = ((𝑦 / 2) · (𝑇𝑥)))
3231fveq2d 6357 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑇‘((𝑦 / 2) · 𝑥))) = (abs‘((𝑦 / 2) · (𝑇𝑥))))
33 absmul 14253 . . . 4 (((𝑦 / 2) ∈ ℂ ∧ (𝑇𝑥) ∈ ℂ) → (abs‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))))
3429, 24, 33syl2an 495 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘((𝑦 / 2) · (𝑇𝑥))) = ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))))
35 rpre 12052 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
36 rpge0 12058 . . . . . 6 ((𝑦 / 2) ∈ ℝ+ → 0 ≤ (𝑦 / 2))
3735, 36absidd 14380 . . . . 5 ((𝑦 / 2) ∈ ℝ+ → (abs‘(𝑦 / 2)) = (𝑦 / 2))
3837adantr 472 . . . 4 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → (abs‘(𝑦 / 2)) = (𝑦 / 2))
3938oveq1d 6829 . . 3 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((abs‘(𝑦 / 2)) · (abs‘(𝑇𝑥))) = ((𝑦 / 2) · (abs‘(𝑇𝑥))))
4032, 34, 393eqtrrd 2799 . 2 (((𝑦 / 2) ∈ ℝ+𝑥 ∈ ℋ) → ((𝑦 / 2) · (abs‘(𝑇𝑥))) = (abs‘(𝑇‘((𝑦 / 2) · 𝑥))))
4121, 23, 25, 28, 40nmcexi 29215 1 (normfn𝑇) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {cab 2746  wral 3050  wrex 3051   class class class wbr 4804  wf 6045  cfv 6049  (class class class)co 6814  supcsup 8513  cc 10146  cr 10147  0cc0 10148  1c1 10149   · cmul 10153  *cxr 10285   < clt 10286  cle 10287  cmin 10478   / cdiv 10896  2c2 11282  +crp 12045  abscabs 14193  chil 28106   · csm 28108  normcno 28110  0c0v 28111   cmv 28112  normfncnmf 28138  ContFnccnfn 28140  LinFnclf 28141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-hilex 28186  ax-hv0cl 28190  ax-hvaddid 28191  ax-hfvmul 28192  ax-hvmulid 28193  ax-hvmulass 28194  ax-hvmul0 28197  ax-hfi 28266  ax-his1 28269  ax-his3 28271  ax-his4 28272
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-hnorm 28155  df-hvsub 28158  df-nmfn 29034  df-cnfn 29036  df-lnfn 29037
This theorem is referenced by:  nmcfnlbi  29241  nmcfnex  29242
  Copyright terms: Public domain W3C validator