MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmblolbii Structured version   Visualization version   GIF version

Theorem nmblolbii 27984
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmblolbi.1 𝑋 = (BaseSet‘𝑈)
nmblolbi.4 𝐿 = (normCV𝑈)
nmblolbi.5 𝑀 = (normCV𝑊)
nmblolbi.6 𝑁 = (𝑈 normOpOLD 𝑊)
nmblolbi.7 𝐵 = (𝑈 BLnOp 𝑊)
nmblolbi.u 𝑈 ∈ NrmCVec
nmblolbi.w 𝑊 ∈ NrmCVec
nmblolbii.b 𝑇𝐵
Assertion
Ref Expression
nmblolbii (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))

Proof of Theorem nmblolbii
StepHypRef Expression
1 fveq2 6353 . . . 4 (𝐴 = (0vec𝑈) → (𝑇𝐴) = (𝑇‘(0vec𝑈)))
21fveq2d 6357 . . 3 (𝐴 = (0vec𝑈) → (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇‘(0vec𝑈))))
3 fveq2 6353 . . . 4 (𝐴 = (0vec𝑈) → (𝐿𝐴) = (𝐿‘(0vec𝑈)))
43oveq2d 6830 . . 3 (𝐴 = (0vec𝑈) → ((𝑁𝑇) · (𝐿𝐴)) = ((𝑁𝑇) · (𝐿‘(0vec𝑈))))
52, 4breq12d 4817 . 2 (𝐴 = (0vec𝑈) → ((𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)) ↔ (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈)))))
6 nmblolbi.u . . . . . . . . 9 𝑈 ∈ NrmCVec
7 nmblolbi.1 . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
8 nmblolbi.4 . . . . . . . . . 10 𝐿 = (normCV𝑈)
97, 8nvcl 27846 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐿𝐴) ∈ ℝ)
106, 9mpan 708 . . . . . . . 8 (𝐴𝑋 → (𝐿𝐴) ∈ ℝ)
1110adantr 472 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ∈ ℝ)
12 eqid 2760 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
137, 12, 8nvz 27854 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝐿𝐴) = 0 ↔ 𝐴 = (0vec𝑈)))
146, 13mpan 708 . . . . . . . . 9 (𝐴𝑋 → ((𝐿𝐴) = 0 ↔ 𝐴 = (0vec𝑈)))
1514necon3bid 2976 . . . . . . . 8 (𝐴𝑋 → ((𝐿𝐴) ≠ 0 ↔ 𝐴 ≠ (0vec𝑈)))
1615biimpar 503 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ≠ 0)
1711, 16rereccld 11064 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (1 / (𝐿𝐴)) ∈ ℝ)
187, 12, 8nvgt0 27859 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴 ≠ (0vec𝑈) ↔ 0 < (𝐿𝐴)))
196, 18mpan 708 . . . . . . . . 9 (𝐴𝑋 → (𝐴 ≠ (0vec𝑈) ↔ 0 < (𝐿𝐴)))
2019biimpa 502 . . . . . . . 8 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 < (𝐿𝐴))
2111, 20recgt0d 11170 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 < (1 / (𝐿𝐴)))
22 0re 10252 . . . . . . . 8 0 ∈ ℝ
23 ltle 10338 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / (𝐿𝐴)) ∈ ℝ) → (0 < (1 / (𝐿𝐴)) → 0 ≤ (1 / (𝐿𝐴))))
2422, 17, 23sylancr 698 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (0 < (1 / (𝐿𝐴)) → 0 ≤ (1 / (𝐿𝐴))))
2521, 24mpd 15 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 ≤ (1 / (𝐿𝐴)))
26 nmblolbi.w . . . . . . . . 9 𝑊 ∈ NrmCVec
27 nmblolbii.b . . . . . . . . 9 𝑇𝐵
28 eqid 2760 . . . . . . . . . 10 (BaseSet‘𝑊) = (BaseSet‘𝑊)
29 nmblolbi.7 . . . . . . . . . 10 𝐵 = (𝑈 BLnOp 𝑊)
307, 28, 29blof 27970 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇:𝑋⟶(BaseSet‘𝑊))
316, 26, 27, 30mp3an 1573 . . . . . . . 8 𝑇:𝑋⟶(BaseSet‘𝑊)
3231ffvelrni 6522 . . . . . . 7 (𝐴𝑋 → (𝑇𝐴) ∈ (BaseSet‘𝑊))
3332adantr 472 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
34 eqid 2760 . . . . . . . 8 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
35 nmblolbi.5 . . . . . . . 8 𝑀 = (normCV𝑊)
3628, 34, 35nvsge0 27849 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐿𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐿𝐴))) ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3726, 36mp3an1 1560 . . . . . 6 ((((1 / (𝐿𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐿𝐴))) ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3817, 25, 33, 37syl21anc 1476 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3917recnd 10280 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (1 / (𝐿𝐴)) ∈ ℂ)
40 simpl 474 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 𝐴𝑋)
41 eqid 2760 . . . . . . . . . . 11 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
4241, 29bloln 27969 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊))
436, 26, 27, 42mp3an 1573 . . . . . . . . 9 𝑇 ∈ (𝑈 LnOp 𝑊)
446, 26, 433pm3.2i 1424 . . . . . . . 8 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊))
45 eqid 2760 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
467, 45, 34, 41lnomul 27945 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ ((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋)) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4744, 46mpan 708 . . . . . . 7 (((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4839, 40, 47syl2anc 696 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4948fveq2d 6357 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) = (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))))
5028, 35nvcl 27846 . . . . . . . . 9 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5126, 32, 50sylancr 698 . . . . . . . 8 (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5251adantr 472 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5352recnd 10280 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ∈ ℂ)
5411recnd 10280 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ∈ ℂ)
5553, 54, 16divrec2d 11017 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
5638, 49, 553eqtr4rd 2805 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) = (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))))
577, 45nvscl 27811 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
586, 57mp3an1 1560 . . . . . . 7 (((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
5958ancoms 468 . . . . . 6 ((𝐴𝑋 ∧ (1 / (𝐿𝐴)) ∈ ℂ) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
6039, 59syldan 488 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
617, 8nvcl 27846 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ)
626, 60, 61sylancr 698 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ)
637, 45, 12, 8nv1 27860 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1)
646, 63mp3an1 1560 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1)
65 eqle 10351 . . . . . 6 (((𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)
6662, 64, 65syl2anc 696 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)
676, 26, 313pm3.2i 1424 . . . . . 6 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊))
68 nmblolbi.6 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
697, 28, 8, 35, 68nmoolb 27956 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊)) ∧ (((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋 ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7067, 69mpan 708 . . . . 5 ((((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋 ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7160, 66, 70syl2anc 696 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7256, 71eqbrtrd 4826 . . 3 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇))
737, 28, 68, 29nmblore 27971 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → (𝑁𝑇) ∈ ℝ)
746, 26, 27, 73mp3an 1573 . . . . 5 (𝑁𝑇) ∈ ℝ
7574a1i 11 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑁𝑇) ∈ ℝ)
76 ledivmul2 11114 . . . 4 (((𝑀‘(𝑇𝐴)) ∈ ℝ ∧ (𝑁𝑇) ∈ ℝ ∧ ((𝐿𝐴) ∈ ℝ ∧ 0 < (𝐿𝐴))) → (((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇) ↔ (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
7752, 75, 11, 20, 76syl112anc 1481 . . 3 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇) ↔ (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
7872, 77mpbid 222 . 2 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
79 0le0 11322 . . . 4 0 ≤ 0
80 eqid 2760 . . . . . . . 8 (0vec𝑊) = (0vec𝑊)
817, 28, 12, 80, 41lno0 27941 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
826, 26, 43, 81mp3an 1573 . . . . . 6 (𝑇‘(0vec𝑈)) = (0vec𝑊)
8382fveq2i 6356 . . . . 5 (𝑀‘(𝑇‘(0vec𝑈))) = (𝑀‘(0vec𝑊))
8480, 35nvz0 27853 . . . . . 6 (𝑊 ∈ NrmCVec → (𝑀‘(0vec𝑊)) = 0)
8526, 84ax-mp 5 . . . . 5 (𝑀‘(0vec𝑊)) = 0
8683, 85eqtri 2782 . . . 4 (𝑀‘(𝑇‘(0vec𝑈))) = 0
8712, 8nvz0 27853 . . . . . . 7 (𝑈 ∈ NrmCVec → (𝐿‘(0vec𝑈)) = 0)
886, 87ax-mp 5 . . . . . 6 (𝐿‘(0vec𝑈)) = 0
8988oveq2i 6825 . . . . 5 ((𝑁𝑇) · (𝐿‘(0vec𝑈))) = ((𝑁𝑇) · 0)
9074recni 10264 . . . . . 6 (𝑁𝑇) ∈ ℂ
9190mul01i 10438 . . . . 5 ((𝑁𝑇) · 0) = 0
9289, 91eqtri 2782 . . . 4 ((𝑁𝑇) · (𝐿‘(0vec𝑈))) = 0
9379, 86, 923brtr4i 4834 . . 3 (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈)))
9493a1i 11 . 2 (𝐴𝑋 → (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈))))
955, 78, 94pm2.61ne 3017 1 (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  wf 6045  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   · cmul 10153   < clt 10286  cle 10287   / cdiv 10896  NrmCVeccnv 27769  BaseSetcba 27771   ·𝑠OLD cns 27772  0veccn0v 27773  normCVcnmcv 27775   LnOp clno 27925   normOpOLD cnmoo 27926   BLnOp cblo 27927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-grpo 27677  df-gid 27678  df-ginv 27679  df-ablo 27729  df-vc 27744  df-nv 27777  df-va 27780  df-ba 27781  df-sm 27782  df-0v 27783  df-nmcv 27785  df-lno 27929  df-nmoo 27930  df-blo 27931
This theorem is referenced by:  nmblolbi  27985
  Copyright terms: Public domain W3C validator