Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nltled Structured version   Visualization version   GIF version

Theorem nltled 10393
 Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
nltled.1 (𝜑 → ¬ 𝐵 < 𝐴)
Assertion
Ref Expression
nltled (𝜑𝐴𝐵)

Proof of Theorem nltled
StepHypRef Expression
1 nltled.1 . 2 (𝜑 → ¬ 𝐵 < 𝐴)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
42, 3lenltd 10389 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
51, 4mpbird 247 1 (𝜑𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∈ wcel 2145   class class class wbr 4787  ℝcr 10141   < clt 10280   ≤ cle 10281 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-xp 5256  df-cnv 5258  df-xr 10284  df-le 10286 This theorem is referenced by:  infrelb  11214  prodge0rd  12140  1smat1  30210  imo72b2  39001  dvbdfbdioolem2  40659  stoweidlem14  40745  fourierdlem10  40848  fourierdlem12  40850  fourierdlem20  40858  fourierdlem24  40862  fourierdlem50  40887  fourierdlem54  40891  fourierdlem63  40900  fourierdlem65  40902  fourierdlem75  40912  fourierdlem79  40916  fouriersw  40962  etransclem3  40968  etransclem7  40972  etransclem10  40975  etransclem15  40980  etransclem20  40985  etransclem21  40986  etransclem22  40987  etransclem24  40989  etransclem25  40990  etransclem27  40992  etransclem32  40997
 Copyright terms: Public domain W3C validator