MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem1 Structured version   Visualization version   GIF version

Theorem nlmvscnlem1 22711
Description: Lemma for nlmvscn 22712. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.v 𝑉 = (Base‘𝑊)
nlmvscn.k 𝐾 = (Base‘𝐹)
nlmvscn.d 𝐷 = (dist‘𝑊)
nlmvscn.e 𝐸 = (dist‘𝐹)
nlmvscn.n 𝑁 = (norm‘𝑊)
nlmvscn.a 𝐴 = (norm‘𝐹)
nlmvscn.s · = ( ·𝑠𝑊)
nlmvscn.t 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
nlmvscn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
nlmvscn.w (𝜑𝑊 ∈ NrmMod)
nlmvscn.r (𝜑𝑅 ∈ ℝ+)
nlmvscn.b (𝜑𝐵𝐾)
nlmvscn.x (𝜑𝑋𝑉)
Assertion
Ref Expression
nlmvscnlem1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
Distinct variable groups:   𝐵,𝑟   𝐷,𝑟   𝐸,𝑟   𝑥,𝑦,𝜑   𝑥,𝑟,𝑦,𝑇   𝑈,𝑟,𝑥,𝑦   𝐹,𝑟,𝑥,𝑦   𝐾,𝑟,𝑦   𝑅,𝑟   𝑉,𝑟   𝑊,𝑟,𝑥,𝑦   · ,𝑟,𝑥,𝑦   𝑋,𝑟
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑥,𝑦,𝑟)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐾(𝑥)   𝑁(𝑥,𝑦,𝑟)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem nlmvscnlem1
StepHypRef Expression
1 nlmvscn.t . . . 4 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
2 nlmvscn.r . . . . . 6 (𝜑𝑅 ∈ ℝ+)
32rphalfcld 12097 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ+)
4 nlmvscn.w . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
5 nlmvscn.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
65nlmngp2 22705 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
74, 6syl 17 . . . . . . 7 (𝜑𝐹 ∈ NrmGrp)
8 nlmvscn.b . . . . . . 7 (𝜑𝐵𝐾)
9 nlmvscn.k . . . . . . . 8 𝐾 = (Base‘𝐹)
10 nlmvscn.a . . . . . . . 8 𝐴 = (norm‘𝐹)
119, 10nmcl 22641 . . . . . . 7 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → (𝐴𝐵) ∈ ℝ)
127, 8, 11syl2anc 696 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ ℝ)
139, 10nmge0 22642 . . . . . . 7 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → 0 ≤ (𝐴𝐵))
147, 8, 13syl2anc 696 . . . . . 6 (𝜑 → 0 ≤ (𝐴𝐵))
1512, 14ge0p1rpd 12115 . . . . 5 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ+)
163, 15rpdivcld 12102 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝐴𝐵) + 1)) ∈ ℝ+)
171, 16syl5eqel 2843 . . 3 (𝜑𝑇 ∈ ℝ+)
18 nlmvscn.u . . . 4 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
19 nlmngp 22702 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
204, 19syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmGrp)
21 nlmvscn.x . . . . . . . 8 (𝜑𝑋𝑉)
22 nlmvscn.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
23 nlmvscn.n . . . . . . . . 9 𝑁 = (norm‘𝑊)
2422, 23nmcl 22641 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → (𝑁𝑋) ∈ ℝ)
2520, 21, 24syl2anc 696 . . . . . . 7 (𝜑 → (𝑁𝑋) ∈ ℝ)
2617rpred 12085 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
2725, 26readdcld 10281 . . . . . 6 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ)
28 0red 10253 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
2922, 23nmge0 22642 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → 0 ≤ (𝑁𝑋))
3020, 21, 29syl2anc 696 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑋))
3125, 17ltaddrpd 12118 . . . . . . 7 (𝜑 → (𝑁𝑋) < ((𝑁𝑋) + 𝑇))
3228, 25, 27, 30, 31lelttrd 10407 . . . . . 6 (𝜑 → 0 < ((𝑁𝑋) + 𝑇))
3327, 32elrpd 12082 . . . . 5 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ+)
343, 33rpdivcld 12102 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝑋) + 𝑇)) ∈ ℝ+)
3518, 34syl5eqel 2843 . . 3 (𝜑𝑈 ∈ ℝ+)
3617, 35ifcld 4275 . 2 (𝜑 → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
37 nlmvscn.d . . . . 5 𝐷 = (dist‘𝑊)
38 nlmvscn.e . . . . 5 𝐸 = (dist‘𝐹)
39 nlmvscn.s . . . . 5 · = ( ·𝑠𝑊)
404adantr 472 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ NrmMod)
412adantr 472 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑅 ∈ ℝ+)
428adantr 472 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐵𝐾)
4321adantr 472 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑋𝑉)
44 simprll 821 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑥𝐾)
45 simprlr 822 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑦𝑉)
467adantr 472 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐹 ∈ NrmGrp)
47 ngpms 22625 . . . . . . . 8 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
4846, 47syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐹 ∈ MetSp)
499, 38mscl 22487 . . . . . . 7 ((𝐹 ∈ MetSp ∧ 𝐵𝐾𝑥𝐾) → (𝐵𝐸𝑥) ∈ ℝ)
5048, 42, 44, 49syl3anc 1477 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐸𝑥) ∈ ℝ)
5136adantr 472 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
5251rpred 12085 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ)
5335rpred 12085 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5453adantr 472 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑈 ∈ ℝ)
55 simprrl 823 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈))
5626adantr 472 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑇 ∈ ℝ)
57 min2 12234 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5856, 54, 57syl2anc 696 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5950, 52, 54, 55, 58ltletrd 10409 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐸𝑥) < 𝑈)
60 ngpms 22625 . . . . . . . . 9 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
6120, 60syl 17 . . . . . . . 8 (𝜑𝑊 ∈ MetSp)
6261adantr 472 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
6322, 37mscl 22487 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝑋𝑉𝑦𝑉) → (𝑋𝐷𝑦) ∈ ℝ)
6462, 43, 45, 63syl3anc 1477 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝑋𝐷𝑦) ∈ ℝ)
65 simprrr 824 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))
66 min1 12233 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6756, 54, 66syl2anc 696 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6864, 52, 56, 65, 67ltletrd 10409 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝑋𝐷𝑦) < 𝑇)
695, 22, 9, 37, 38, 23, 10, 39, 1, 18, 40, 41, 42, 43, 44, 45, 59, 68nlmvscnlem2 22710 . . . 4 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)
7069expr 644 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝑉)) → (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
7170ralrimivva 3109 . 2 (𝜑 → ∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
72 breq2 4808 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐵𝐸𝑥) < 𝑟 ↔ (𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈)))
73 breq2 4808 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝑋𝐷𝑦) < 𝑟 ↔ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))
7472, 73anbi12d 749 . . . . 5 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) ↔ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))))
7574imbi1d 330 . . . 4 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅) ↔ (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)))
76752ralbidv 3127 . . 3 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅) ↔ ∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)))
7776rspcev 3449 . 2 ((if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+ ∧ ∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)) → ∃𝑟 ∈ ℝ+𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
7836, 71, 77syl2anc 696 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  ifcif 4230   class class class wbr 4804  cfv 6049  (class class class)co 6814  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   < clt 10286  cle 10287   / cdiv 10896  2c2 11282  +crp 12045  Basecbs 16079  Scalarcsca 16166   ·𝑠 cvsca 16167  distcds 16172  MetSpcmt 22344  normcnm 22602  NrmGrpcngp 22603  NrmModcnlm 22606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-fz 12540  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-plusg 16176  df-mulr 16177  df-tset 16182  df-ple 16183  df-ds 16186  df-0g 16324  df-topgen 16326  df-xrs 16384  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mgp 18710  df-ur 18722  df-ring 18769  df-lmod 19087  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-xms 22346  df-ms 22347  df-nm 22608  df-ngp 22609  df-nrg 22611  df-nlm 22612
This theorem is referenced by:  nlmvscn  22712
  Copyright terms: Public domain W3C validator