![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmngp | Structured version Visualization version GIF version |
Description: A normed module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmngp | ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2770 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
3 | eqid 2770 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2770 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2770 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
6 | eqid 2770 | . . . 4 ⊢ (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊)) | |
7 | 1, 2, 3, 4, 5, 6 | isnlm 22698 | . . 3 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠 ‘𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))) |
8 | 7 | simplbi 479 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing)) |
9 | 8 | simp1d 1135 | 1 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ∀wral 3060 ‘cfv 6031 (class class class)co 6792 · cmul 10142 Basecbs 16063 Scalarcsca 16151 ·𝑠 cvsca 16152 LModclmod 19072 normcnm 22600 NrmGrpcngp 22601 NrmRingcnrg 22603 NrmModcnlm 22604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-nul 4920 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-ov 6795 df-nlm 22610 |
This theorem is referenced by: nlmdsdi 22704 nlmdsdir 22705 nlmmul0or 22706 nlmvscnlem2 22708 nlmvscnlem1 22709 nlmvscn 22710 nlmtlm 22717 lssnlm 22724 ngpocelbl 22727 isnmhm2 22775 idnmhm 22777 0nmhm 22778 nmoleub2lem 23132 nmoleub2lem3 23133 nmoleub2lem2 23134 nmoleub3 23137 nmhmcn 23138 ncvsm1 23172 ncvsdif 23173 ncvspi 23174 ncvs1 23175 ncvspds 23179 cphngp 23191 ipcnlem2 23261 ipcnlem1 23262 csscld 23266 bnngp 23357 |
Copyright terms: Public domain | W3C validator |