MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyi Structured version   Visualization version   GIF version

Theorem nllyi 21500
Description: The property of an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyi ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑃   𝑢,𝑈   𝑢,𝐽

Proof of Theorem nllyi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 21494 . . . 4 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
21simprbi 483 . . 3 (𝐽 ∈ 𝑛-Locally 𝐴 → ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
3 pweq 4305 . . . . . . 7 (𝑥 = 𝑈 → 𝒫 𝑥 = 𝒫 𝑈)
43ineq2d 3957 . . . . . 6 (𝑥 = 𝑈 → (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈))
54rexeqdv 3284 . . . . 5 (𝑥 = 𝑈 → (∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴))
65raleqbi1dv 3285 . . . 4 (𝑥 = 𝑈 → (∀𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴 ↔ ∀𝑦𝑈𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴))
76rspccva 3448 . . 3 ((∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴)
82, 7sylan 489 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴)
9 elin 3939 . . . . . . 7 (𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑦}) ∧ 𝑢 ∈ 𝒫 𝑈))
10 sneq 4331 . . . . . . . . . 10 (𝑦 = 𝑃 → {𝑦} = {𝑃})
1110fveq2d 6357 . . . . . . . . 9 (𝑦 = 𝑃 → ((nei‘𝐽)‘{𝑦}) = ((nei‘𝐽)‘{𝑃}))
1211eleq2d 2825 . . . . . . . 8 (𝑦 = 𝑃 → (𝑢 ∈ ((nei‘𝐽)‘{𝑦}) ↔ 𝑢 ∈ ((nei‘𝐽)‘{𝑃})))
13 selpw 4309 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝑈𝑢𝑈)
1413a1i 11 . . . . . . . 8 (𝑦 = 𝑃 → (𝑢 ∈ 𝒫 𝑈𝑢𝑈))
1512, 14anbi12d 749 . . . . . . 7 (𝑦 = 𝑃 → ((𝑢 ∈ ((nei‘𝐽)‘{𝑦}) ∧ 𝑢 ∈ 𝒫 𝑈) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢𝑈)))
169, 15syl5bb 272 . . . . . 6 (𝑦 = 𝑃 → (𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢𝑈)))
1716anbi1d 743 . . . . 5 (𝑦 = 𝑃 → ((𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ((𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢𝑈) ∧ (𝐽t 𝑢) ∈ 𝐴)))
18 anass 684 . . . . 5 (((𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ 𝑢𝑈) ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴)))
1917, 18syl6bb 276 . . . 4 (𝑦 = 𝑃 → ((𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈) ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑢 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴))))
2019rexbidv2 3186 . . 3 (𝑦 = 𝑃 → (∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2120rspccva 3448 . 2 ((∀𝑦𝑈𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑈)(𝐽t 𝑢) ∈ 𝐴𝑃𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴))
228, 21stoic3 1850 1 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢𝑈 ∧ (𝐽t 𝑢) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cin 3714  wss 3715  𝒫 cpw 4302  {csn 4321  cfv 6049  (class class class)co 6814  t crest 16303  Topctop 20920  neicnei 21123  𝑛-Locally cnlly 21490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-ov 6817  df-nlly 21492
This theorem is referenced by:  nlly2i  21501  llycmpkgen  21577
  Copyright terms: Public domain W3C validator