Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlimsucg Structured version   Visualization version   GIF version

Theorem nlimsucg 7004
 Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
nlimsucg (𝐴𝑉 → ¬ Lim suc 𝐴)

Proof of Theorem nlimsucg
StepHypRef Expression
1 limord 5753 . . . 4 (Lim suc 𝐴 → Ord suc 𝐴)
2 ordsuc 6976 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
31, 2sylibr 224 . . 3 (Lim suc 𝐴 → Ord 𝐴)
4 limuni 5754 . . 3 (Lim suc 𝐴 → suc 𝐴 = suc 𝐴)
5 ordunisuc 6994 . . . . 5 (Ord 𝐴 suc 𝐴 = 𝐴)
65eqeq2d 2631 . . . 4 (Ord 𝐴 → (suc 𝐴 = suc 𝐴 ↔ suc 𝐴 = 𝐴))
7 ordirr 5710 . . . . . 6 (Ord 𝐴 → ¬ 𝐴𝐴)
8 eleq2 2687 . . . . . . 7 (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴𝐴𝐴))
98notbid 308 . . . . . 6 (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴))
107, 9syl5ibrcom 237 . . . . 5 (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴))
11 sucidg 5772 . . . . . 6 (𝐴𝑉𝐴 ∈ suc 𝐴)
1211con3i 150 . . . . 5 𝐴 ∈ suc 𝐴 → ¬ 𝐴𝑉)
1310, 12syl6 35 . . . 4 (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴𝑉))
146, 13sylbid 230 . . 3 (Ord 𝐴 → (suc 𝐴 = suc 𝐴 → ¬ 𝐴𝑉))
153, 4, 14sylc 65 . 2 (Lim suc 𝐴 → ¬ 𝐴𝑉)
1615con2i 134 1 (𝐴𝑉 → ¬ Lim suc 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1480   ∈ wcel 1987  ∪ cuni 4409  Ord word 5691  Lim wlim 5693  suc csuc 5694 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877  ax-un 6914 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-tr 4723  df-eprel 4995  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698 This theorem is referenced by:  tz7.44-2  7463  rankxpsuc  8705  dfrdg2  31455  dfrdg4  31753
 Copyright terms: Public domain W3C validator