![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nlfnval | Structured version Visualization version GIF version |
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nlfnval | ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10230 | . . 3 ⊢ ℂ ∈ V | |
2 | ax-hilex 28187 | . . 3 ⊢ ℋ ∈ V | |
3 | 1, 2 | elmap 8055 | . 2 ⊢ (𝑇 ∈ (ℂ ↑𝑚 ℋ) ↔ 𝑇: ℋ⟶ℂ) |
4 | cnvexg 7279 | . . . 4 ⊢ (𝑇 ∈ (ℂ ↑𝑚 ℋ) → ◡𝑇 ∈ V) | |
5 | imaexg 7270 | . . . 4 ⊢ (◡𝑇 ∈ V → (◡𝑇 “ {0}) ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑𝑚 ℋ) → (◡𝑇 “ {0}) ∈ V) |
7 | cnveq 5452 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡𝑡 = ◡𝑇) | |
8 | 7 | imaeq1d 5624 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡𝑡 “ {0}) = (◡𝑇 “ {0})) |
9 | df-nlfn 29036 | . . . 4 ⊢ null = (𝑡 ∈ (ℂ ↑𝑚 ℋ) ↦ (◡𝑡 “ {0})) | |
10 | 8, 9 | fvmptg 6444 | . . 3 ⊢ ((𝑇 ∈ (ℂ ↑𝑚 ℋ) ∧ (◡𝑇 “ {0}) ∈ V) → (null‘𝑇) = (◡𝑇 “ {0})) |
11 | 6, 10 | mpdan 705 | . 2 ⊢ (𝑇 ∈ (ℂ ↑𝑚 ℋ) → (null‘𝑇) = (◡𝑇 “ {0})) |
12 | 3, 11 | sylbir 225 | 1 ⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 Vcvv 3341 {csn 4322 ◡ccnv 5266 “ cima 5270 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ↑𝑚 cmap 8026 ℂcc 10147 0cc0 10149 ℋchil 28107 nullcnl 28140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-hilex 28187 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-map 8028 df-nlfn 29036 |
This theorem is referenced by: elnlfn 29118 nlelshi 29250 |
Copyright terms: Public domain | W3C validator |