![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngtmnft | Structured version Visualization version GIF version |
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
ngtmnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 10302 | . . . 4 ⊢ -∞ ∈ ℝ* | |
2 | xrltnr 12158 | . . . 4 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ -∞ < -∞ |
4 | breq2 4791 | . . 3 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
5 | 3, 4 | mtbiri 316 | . 2 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
6 | mnfle 12174 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
7 | xrleloe 12182 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴))) | |
8 | 1, 7 | mpan 670 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴))) |
9 | 6, 8 | mpbid 222 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ∨ -∞ = 𝐴)) |
10 | 9 | ord 853 | . . 3 ⊢ (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → -∞ = 𝐴)) |
11 | eqcom 2778 | . . 3 ⊢ (-∞ = 𝐴 ↔ 𝐴 = -∞) | |
12 | 10, 11 | syl6ib 241 | . 2 ⊢ (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → 𝐴 = -∞)) |
13 | 5, 12 | impbid2 216 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 836 = wceq 1631 ∈ wcel 2145 class class class wbr 4787 -∞cmnf 10278 ℝ*cxr 10279 < clt 10280 ≤ cle 10281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-pre-lttri 10216 ax-pre-lttrn 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-po 5171 df-so 5172 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 |
This theorem is referenced by: xlemnf 12203 xrrebnd 12204 ge0nemnf 12209 xlt2add 12295 xrsdsreclblem 20007 xblpnfps 22420 xblpnf 22421 supxrnemnf 29874 itg2addnclem 33793 supxrgelem 40066 supxrge 40067 nemnftgtmnft 40073 infxrbnd2 40098 |
Copyright terms: Public domain | W3C validator |