![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version |
Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
2 | eqid 2771 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2771 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 1, 2, 3 | isngp 22620 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
5 | 4 | simp2bi 1140 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ⊆ wss 3723 ∘ ccom 5253 ‘cfv 6031 distcds 16158 Grpcgrp 17630 -gcsg 17632 MetSpcmt 22343 normcnm 22601 NrmGrpcngp 22602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-co 5258 df-iota 5994 df-fv 6039 df-ngp 22608 |
This theorem is referenced by: ngpxms 22625 ngptps 22626 ngpmet 22627 isngp4 22636 nmf 22639 nmmtri 22646 nmrtri 22648 subgngp 22659 ngptgp 22660 tngngp2 22676 nlmvscnlem2 22709 nlmvscnlem1 22710 nlmvscn 22711 nrginvrcn 22716 nghmcn 22769 nmcn 22867 nmhmcn 23139 ipcnlem2 23262 ipcnlem1 23263 ipcn 23264 nglmle 23319 minveclem2 23416 minveclem3b 23418 minveclem3 23419 minveclem4 23422 minveclem7 23425 |
Copyright terms: Public domain | W3C validator |