Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmcn Structured version   Visualization version   GIF version

Theorem nghmcn 22770
 Description: A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nghmcn.j 𝐽 = (TopOpen‘𝑆)
nghmcn.k 𝐾 = (TopOpen‘𝑇)
Assertion
Ref Expression
nghmcn (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem nghmcn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nghmghm 22759 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 eqid 2760 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2760 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
42, 3ghmf 17885 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
51, 4syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
6 simprr 813 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
7 eqid 2760 . . . . . . . . 9 (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇)
87nghmcl 22752 . . . . . . . 8 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ)
9 nghmrcl1 22757 . . . . . . . . 9 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
10 nghmrcl2 22758 . . . . . . . . 9 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
117nmoge0 22746 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ ((𝑆 normOp 𝑇)‘𝐹))
129, 10, 1, 11syl3anc 1477 . . . . . . . 8 (𝐹 ∈ (𝑆 NGHom 𝑇) → 0 ≤ ((𝑆 normOp 𝑇)‘𝐹))
138, 12ge0p1rpd 12115 . . . . . . 7 (𝐹 ∈ (𝑆 NGHom 𝑇) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
1413adantr 472 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
156, 14rpdivcld 12102 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ∈ ℝ+)
16 ngpms 22625 . . . . . . . . . . . 12 (𝑆 ∈ NrmGrp → 𝑆 ∈ MetSp)
179, 16syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ MetSp)
1817ad2antrr 764 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ MetSp)
19 simplrl 819 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
20 simpr 479 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
21 eqid 2760 . . . . . . . . . . 11 (dist‘𝑆) = (dist‘𝑆)
222, 21mscl 22487 . . . . . . . . . 10 ((𝑆 ∈ MetSp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(dist‘𝑆)𝑦) ∈ ℝ)
2318, 19, 20, 22syl3anc 1477 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(dist‘𝑆)𝑦) ∈ ℝ)
246adantr 472 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑟 ∈ ℝ+)
2524rpred 12085 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑟 ∈ ℝ)
2613ad2antrr 764 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
2723, 25, 26ltmuldiv2d 12133 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟 ↔ (𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
28 ngpms 22625 . . . . . . . . . . . . 13 (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp)
2910, 28syl 17 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ MetSp)
3029ad2antrr 764 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑇 ∈ MetSp)
315ad2antrr 764 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3231, 19ffvelrnd 6524 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑥) ∈ (Base‘𝑇))
3331, 20ffvelrnd 6524 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑦) ∈ (Base‘𝑇))
34 eqid 2760 . . . . . . . . . . . 12 (dist‘𝑇) = (dist‘𝑇)
353, 34mscl 22487 . . . . . . . . . . 11 ((𝑇 ∈ MetSp ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ)
3630, 32, 33, 35syl3anc 1477 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ)
378ad2antrr 764 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ)
3837, 23remulcld 10282 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ)
3926rpred 12085 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ)
4039, 23remulcld 10282 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ)
417, 2, 21, 34nmods 22769 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
42413expa 1112 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
4342adantlrr 759 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
44 msxms 22480 . . . . . . . . . . . . 13 (𝑆 ∈ MetSp → 𝑆 ∈ ∞MetSp)
4518, 44syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ ∞MetSp)
462, 21xmsge0 22489 . . . . . . . . . . . 12 ((𝑆 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 0 ≤ (𝑥(dist‘𝑆)𝑦))
4745, 19, 20, 46syl3anc 1477 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 0 ≤ (𝑥(dist‘𝑆)𝑦))
4837lep1d 11167 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑆 normOp 𝑇)‘𝐹) ≤ (((𝑆 normOp 𝑇)‘𝐹) + 1))
4937, 39, 23, 47, 48lemul1ad 11175 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)))
5036, 38, 40, 43, 49letrd 10406 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)))
51 lelttr 10340 . . . . . . . . . 10 ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5236, 40, 25, 51syl3anc 1477 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5350, 52mpand 713 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟 → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5427, 53sylbird 250 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5519, 20ovresd 6967 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) = (𝑥(dist‘𝑆)𝑦))
5655breq1d 4814 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ↔ (𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
5732, 33ovresd 6967 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) = ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)))
5857breq1d 4814 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟 ↔ ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5954, 56, 583imtr4d 283 . . . . . 6 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6059ralrimiva 3104 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → ∀𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
61 breq2 4808 . . . . . . . 8 (𝑠 = (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 ↔ (𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
6261imbi1d 330 . . . . . . 7 (𝑠 = (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → (((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟) ↔ ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟)))
6362ralbidv 3124 . . . . . 6 (𝑠 = (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → (∀𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟) ↔ ∀𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟)))
6463rspcev 3449 . . . . 5 (((𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ∈ ℝ+ ∧ ∀𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6515, 60, 64syl2anc 696 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6665ralrimivva 3109 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
67 eqid 2760 . . . . . 6 ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) = ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))
682, 67xmsxmet 22482 . . . . 5 (𝑆 ∈ ∞MetSp → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
6917, 44, 683syl 18 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
70 msxms 22480 . . . . 5 (𝑇 ∈ MetSp → 𝑇 ∈ ∞MetSp)
71 eqid 2760 . . . . . 6 ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))
723, 71xmsxmet 22482 . . . . 5 (𝑇 ∈ ∞MetSp → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
7329, 70, 723syl 18 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
74 eqid 2760 . . . . 5 (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))
75 eqid 2760 . . . . 5 (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))
7674, 75metcn 22569 . . . 4 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇))) → (𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))) ↔ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))))
7769, 73, 76syl2anc 696 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))) ↔ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))))
785, 66, 77mpbir2and 995 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))))
79 nghmcn.j . . . . 5 𝐽 = (TopOpen‘𝑆)
8079, 2, 67mstopn 22478 . . . 4 (𝑆 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
8117, 80syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
82 nghmcn.k . . . . 5 𝐾 = (TopOpen‘𝑇)
8382, 3, 71mstopn 22478 . . . 4 (𝑇 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
8429, 83syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
8581, 84oveq12d 6832 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐽 Cn 𝐾) = ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))))
8678, 85eleqtrrd 2842 1 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051   class class class wbr 4804   × cxp 5264   ↾ cres 5268  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814  ℝcr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286   ≤ cle 10287   / cdiv 10896  ℝ+crp 12045  Basecbs 16079  distcds 16172  TopOpenctopn 16304   GrpHom cghm 17878  ∞Metcxmt 19953  MetOpencmopn 19958   Cn ccn 21250  ∞MetSpcxme 22343  MetSpcmt 22344  NrmGrpcngp 22603   normOp cnmo 22730   NGHom cnghm 22731 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ico 12394  df-0g 16324  df-topgen 16326  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-ghm 17879  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cn 21253  df-cnp 21254  df-xms 22346  df-ms 22347  df-nm 22608  df-ngp 22609  df-nmo 22733  df-nghm 22734 This theorem is referenced by:  nmhmcn  23140
 Copyright terms: Public domain W3C validator