![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfxfr | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfxfr | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1818 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | mpbir 221 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-ex 1745 df-nf 1750 |
This theorem is referenced by: nfanOLD 1869 nfnan 1870 nf3an 1871 nfor 1874 nf3or 1875 nfa1 2068 nfnf1 2071 nfa2 2080 nfan1 2106 nfex 2192 nfnf 2196 nfnf1OLD 2197 nfs1f 2411 nfeu1 2508 nfmo1 2509 nfnfc1 2796 nfnfc 2803 nfnfcALT 2804 nfne 2923 nfnel 2933 nfra1 2970 nfre1 3034 nfreu1 3139 nfrmo1 3140 nfrmo 3144 nfss 3629 nfdisj 4664 nfdisj1 4665 nfpo 5069 nfso 5070 nffr 5117 nfse 5118 nfwe 5119 nfrel 5238 sb8iota 5896 nffun 5949 nffn 6025 nff 6079 nff1 6137 nffo 6152 nff1o 6173 nfiso 6612 tz7.49 7585 nfixp 7969 bnj919 30963 bnj1379 31027 bnj571 31102 bnj607 31112 bnj873 31120 bnj981 31146 bnj1039 31165 bnj1128 31184 bnj1388 31227 bnj1398 31228 bnj1417 31235 bnj1444 31237 bnj1445 31238 bnj1446 31239 bnj1449 31242 bnj1467 31248 bnj1489 31250 bnj1312 31252 bnj1518 31258 bnj1525 31263 bj-nfnfc 32978 wl-nfae1 33445 wl-ax11-lem4 33495 ptrecube 33539 nfdfat 41531 |
Copyright terms: Public domain | W3C validator |