MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrd Structured version   Visualization version   GIF version

Theorem nfwrd 13519
Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
nfwrd.1 𝑥𝑆
Assertion
Ref Expression
nfwrd 𝑥Word 𝑆

Proof of Theorem nfwrd
Dummy variables 𝑤 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 13485 . 2 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
2 nfcv 2902 . . . 4 𝑥0
3 nfcv 2902 . . . . 5 𝑥𝑤
4 nfcv 2902 . . . . 5 𝑥(0..^𝑙)
5 nfwrd.1 . . . . 5 𝑥𝑆
63, 4, 5nff 6202 . . . 4 𝑥 𝑤:(0..^𝑙)⟶𝑆
72, 6nfrex 3145 . . 3 𝑥𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆
87nfab 2907 . 2 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
91, 8nfcxfr 2900 1 𝑥Word 𝑆
Colors of variables: wff setvar class
Syntax hints:  {cab 2746  wnfc 2889  wrex 3051  wf 6045  (class class class)co 6813  0cc0 10128  0cn0 11484  ..^cfzo 12659  Word cword 13477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-fun 6051  df-fn 6052  df-f 6053  df-word 13485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator