![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 4590 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
2 | nfuni.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1992 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
4 | 2, 3 | nfrex 3145 | . . 3 ⊢ Ⅎ𝑥∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
5 | 4 | nfab 2907 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
6 | 1, 5 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2746 Ⅎwnfc 2889 ∃wrex 3051 ∪ cuni 4588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-uni 4589 |
This theorem is referenced by: nfiota1 6014 nfwrecs 7578 nfsup 8522 ptunimpt 21600 disjabrex 29702 disjabrexf 29703 nfesum1 30411 nfesum2 30412 bnj1398 31409 bnj1446 31420 bnj1447 31421 bnj1448 31422 bnj1466 31428 bnj1467 31429 bnj1519 31440 bnj1520 31441 bnj1525 31444 bnj1523 31446 dfon2lem3 31995 nffrecs 32084 mptsnunlem 33496 ptrest 33721 heibor1 33922 nfunidALT2 34759 nfunidALT 34760 disjinfi 39879 stoweidlem28 40748 stoweidlem59 40779 fourierdlem80 40906 smfresal 41501 smfpimbor1lem2 41512 nfsetrecs 42943 |
Copyright terms: Public domain | W3C validator |