MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsup Structured version   Visualization version   GIF version

Theorem nfsup 8398
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
nfsup.1 𝑥𝐴
nfsup.2 𝑥𝐵
nfsup.3 𝑥𝑅
Assertion
Ref Expression
nfsup 𝑥sup(𝐴, 𝐵, 𝑅)

Proof of Theorem nfsup
StepHypRef Expression
1 dfsup2 8391 . 2 sup(𝐴, 𝐵, 𝑅) = (𝐵 ∖ ((𝑅𝐴) ∪ (𝑅 “ (𝐵 ∖ (𝑅𝐴)))))
2 nfsup.2 . . . 4 𝑥𝐵
3 nfsup.3 . . . . . . 7 𝑥𝑅
43nfcnv 5333 . . . . . 6 𝑥𝑅
5 nfsup.1 . . . . . 6 𝑥𝐴
64, 5nfima 5509 . . . . 5 𝑥(𝑅𝐴)
72, 6nfdif 3764 . . . . . 6 𝑥(𝐵 ∖ (𝑅𝐴))
83, 7nfima 5509 . . . . 5 𝑥(𝑅 “ (𝐵 ∖ (𝑅𝐴)))
96, 8nfun 3802 . . . 4 𝑥((𝑅𝐴) ∪ (𝑅 “ (𝐵 ∖ (𝑅𝐴))))
102, 9nfdif 3764 . . 3 𝑥(𝐵 ∖ ((𝑅𝐴) ∪ (𝑅 “ (𝐵 ∖ (𝑅𝐴)))))
1110nfuni 4474 . 2 𝑥 (𝐵 ∖ ((𝑅𝐴) ∪ (𝑅 “ (𝐵 ∖ (𝑅𝐴)))))
121, 11nfcxfr 2791 1 𝑥sup(𝐴, 𝐵, 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2780  cdif 3604  cun 3605   cuni 4468  ccnv 5142  cima 5146  supcsup 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-xp 5149  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-sup 8389
This theorem is referenced by:  nfinf  8429  itg2cnlem1  23573  esum2d  30283  nfwlim  31892  totbndbnd  33718  aomclem8  37948  binomcxplemdvbinom  38869  binomcxplemdvsum  38871  binomcxplemnotnn0  38872  ssfiunibd  39837  uzub  39971  limsupubuz  40263  fourierdlem20  40662  fourierdlem31  40673  fourierdlem79  40720  sge0ltfirp  40935  pimdecfgtioc  41246  decsmflem  41295  smfsup  41341  smfsupxr  41343  smflimsup  41355
  Copyright terms: Public domain W3C validator