![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsn | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsn | ⊢ Ⅎ𝑥{𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4298 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2, 2 | nfpr 4339 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
4 | 1, 3 | nfcxfr 2864 | 1 ⊢ Ⅎ𝑥{𝐴} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2853 {csn 4285 {cpr 4287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-v 3306 df-un 3685 df-sn 4286 df-pr 4288 |
This theorem is referenced by: nfop 4525 iunopeqop 5085 nfpred 5798 nfsuc 5909 sniota 5991 dfmpt2 7387 bnj958 31238 bnj1000 31239 bnj1446 31341 bnj1447 31342 bnj1448 31343 bnj1466 31349 bnj1467 31350 nosupbnd2 32089 nfaltop 32314 stoweidlem21 40658 stoweidlem47 40684 nfdfat 41633 |
Copyright terms: Public domain | W3C validator |