MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsb4 Structured version   Visualization version   GIF version

Theorem nfsb4 2388
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
nfsb4.1 𝑧𝜑
Assertion
Ref Expression
nfsb4 (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)

Proof of Theorem nfsb4
StepHypRef Expression
1 nfsb4t 2387 . 2 (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
2 nfsb4.1 . 2 𝑧𝜑
31, 2mpg 1722 1 (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1479  wnf 1706  [wsb 1878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879
This theorem is referenced by:  sbco2  2413  nfsb  2438
  Copyright terms: Public domain W3C validator